Happy last lecture!

- Quiz 12, Friday, Nov 20th 6am until Nov 22nd 11:59pm (midnight)
 - Practical advice
 - This quiz will have 10 questions (15min)
 - If you get 5 questions correctly, you get a full grade on it
- Touch-point 3: deliverables due Nov 22nd, live-event Mon, Nov 23rd
 - Single-slide presentation outlining progress highlights and current challenges
 - Three-minute pre-recorded presentation with your progress and current challenges
- Project final report due Dec 7th 11:59pm (midnight)
 - GitHub page with all of the results you have achieved utilizing both unsupervised learning and supervised learning
 - Final seven-minute long pre-recorded presentation
- **CIOS participation** (> 80% of the class by 12/11) \rightarrow 1 bonus point for everyone

Grading schedule

- Assignment 4 grades \rightarrow 12/4 by 11:59 pm
- **Project final report** \rightarrow 12/9 by 11:59 pm

All regrade requests should be in by 11:59pm EST on 12/10

Course objectives

- Introduce you to the machine learning **workflow**
- Develop deep understanding of major machine learning **algorithms**
- Learn how to apply tools for real-data analysis problems
- Create effective visualizations for data modeling
- Improve your written and verbal communication skills
- Experience teamwork in a remote environment
- Motivate you to do **research in data science** and machine learning

CS4641B Machine Learning Lecture 24: Practical advice

Rodrigo Borela ► rborelav@gatech.edu

Slides adapted from Vivek Srikumar, Andrew Ng and Mahdi Roozbahani

Machine learning as a discipline

Study of algorithms that

- improve their performance P
- at some task T
- with experience E well-defined learning task: <P, T, E>

— Tom Mitchell

Unsupervised learning

- Probability and statistics and information theory
 - Covariance and correlation matrices
 - Entropy and mutual information
- Clustering
 - K-Means
 - DBSCAN
 - Probabilistic (using GMM)
 - Hierarchical
 - Clustering evaluation
- Probability density estimation
 - Parametric (exponential, Bernoulli, Gaussian)
 - Non-parametric (histograms, kernel density estimation)
- Dimensionality reduction
 - Feature selection
 - Principal component analysis

6

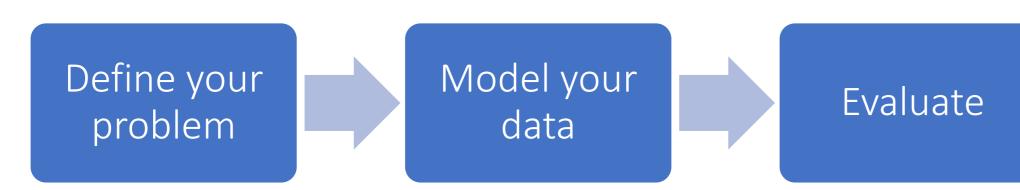
Supervised learning

- Regression
 - Linear regression
 - Regularized linear regression
 - Neural Networks
 - Regression trees*
 - Convolutional neural networks
- Classification
 - Logistic regression
 - Bayes classifiers
 - Decision tree and random forest
 - Support vector machines
 - Kernel SVM
 - Neural networks
 - Convolutional neural networks

7

Machine learning in practice

Machine learning is the process of turning data into actionable knowledge for task support and decision making.



CS4641B Machine Learning | Fall 2020 | Slide credit: Mahdi Roozbahani

Outline

- Model diagnostics
- Error analysis
- Additional advice

9

Outline

- Model diagnostics
- Error analysis
- Additional advice

Debugging machine learning

- Suppose you train an SVM or a logistic regression classifier for spam detection
- You **obviously** follow best practices for finding hyperparameters (such as cross-validation) ... and make sure there are no bugs in the code
- Your classifier is only 75% accurate

What can you do to improve it?

Different ways to improve your model

- More training data
- Features
 - 1. Use more features
 - 2. Use fewer features
 - 3. Use other features
- Better training
 - 1. Run for more iterations
 - 2. Use a different algorithm
 - 3. Use a different classifier
 - 4. Play with regularization

Tedious!

- And prone to luck
- Let us try to n methodical

And prone to errors, dependence on

Let us try to make this process more

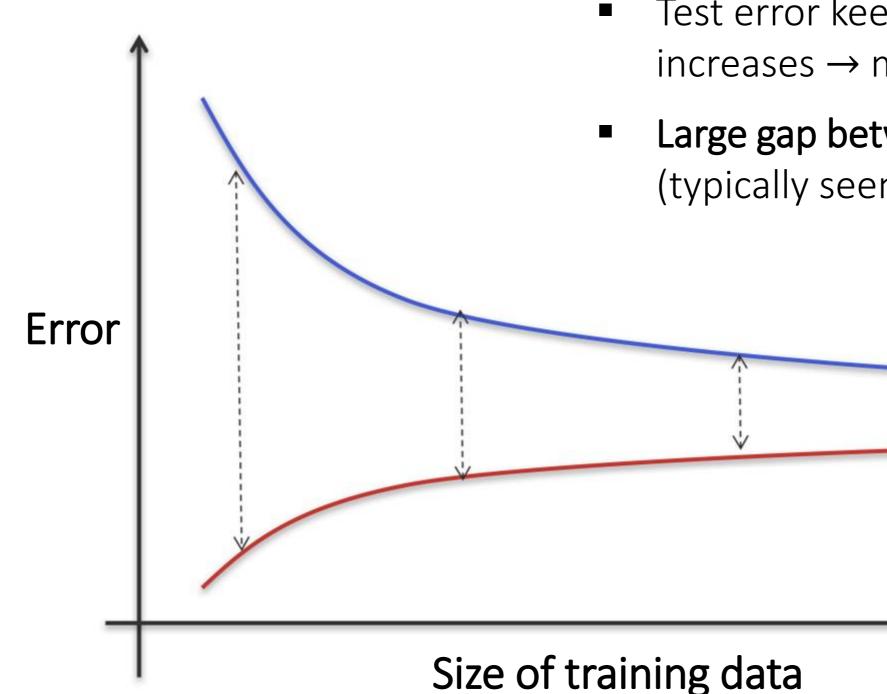
First step: diagnose your model

- Some possible problems:
 - Overfitting (high variance)
 - Underfitting (high bias)
 - Your learning does not converge
 - Are you measuring the right thing?

Overfitting vs. underfitting

- **Overfitting**: the training accuracy is much higher than the test accuracy
 - The model explains the training set very well, but poor generalization
- **Underfitting**: both accuracies are unacceptably low
 - The model can not represent the concept well enough

Overfitting (high variance)

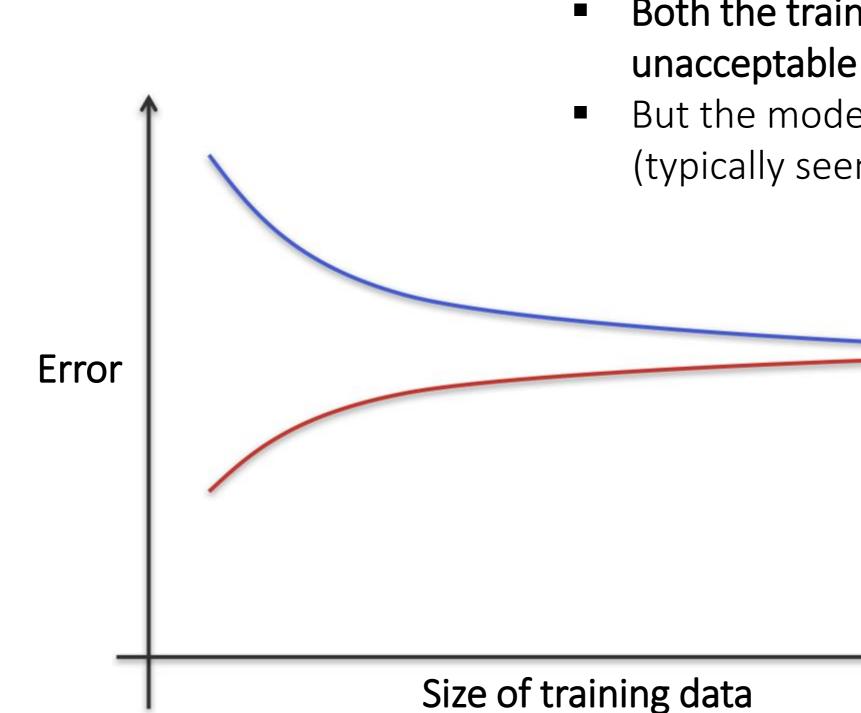


Test error keeps decreasing as training set increases \rightarrow more data will help

Large gap between training and test error (typically seen for more complex models)

Generalization error/test error
Training error

Underfitting (high bias)



Both the train and test error are

But the model seems to converge (typically seen for more simple models)

Generalization error/test error Training error

Different ways to improve your model

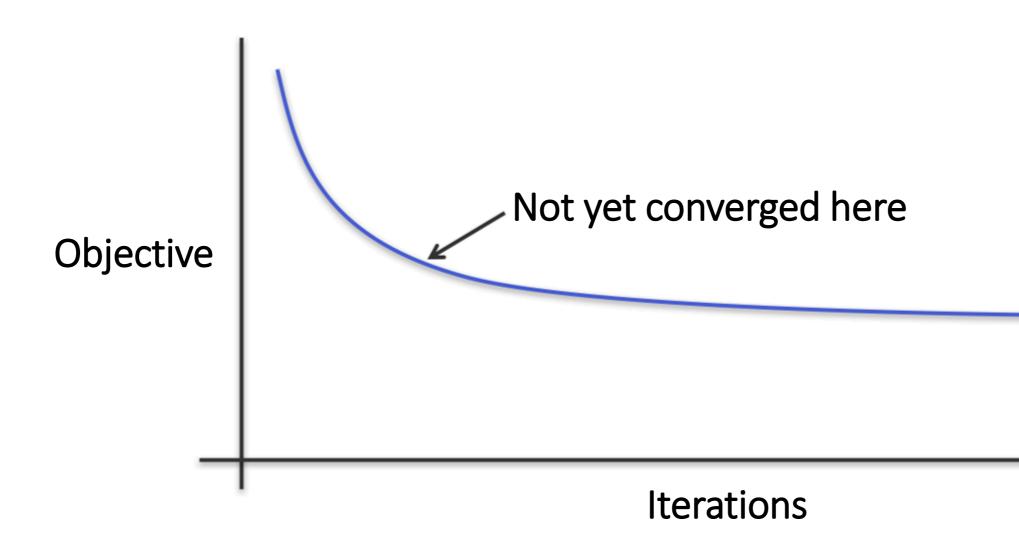
- More training data → Helps with overfitting
- Features
 - 1. Use more features \rightarrow Helps with underfitting
 - 2. Use fewer features \rightarrow Helps with overfitting
 - 3. Use other features → Could help with overfitting and underfitting
- Better training
 - 1. Run for more iterations
 - 2. Use a different algorithm
 - 3. Use a different classifier
 - 4. Play with regularization → Could help with overfitting and underfitting

Diagnostics

- ✓ Overfitting (high variance)
- ✓ Underfitting (high bias)
- Your learning does not converge
- Are you measuring the right thing?

Has the model converged?

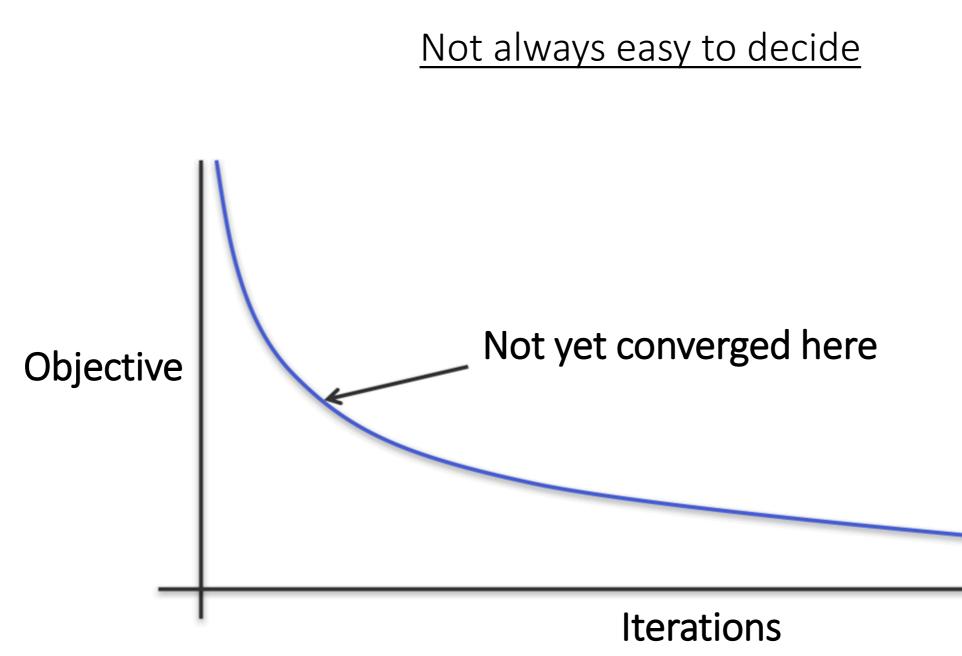
If learning is framed as an optimization problem, track the objective



Converged here

Has the model converged?

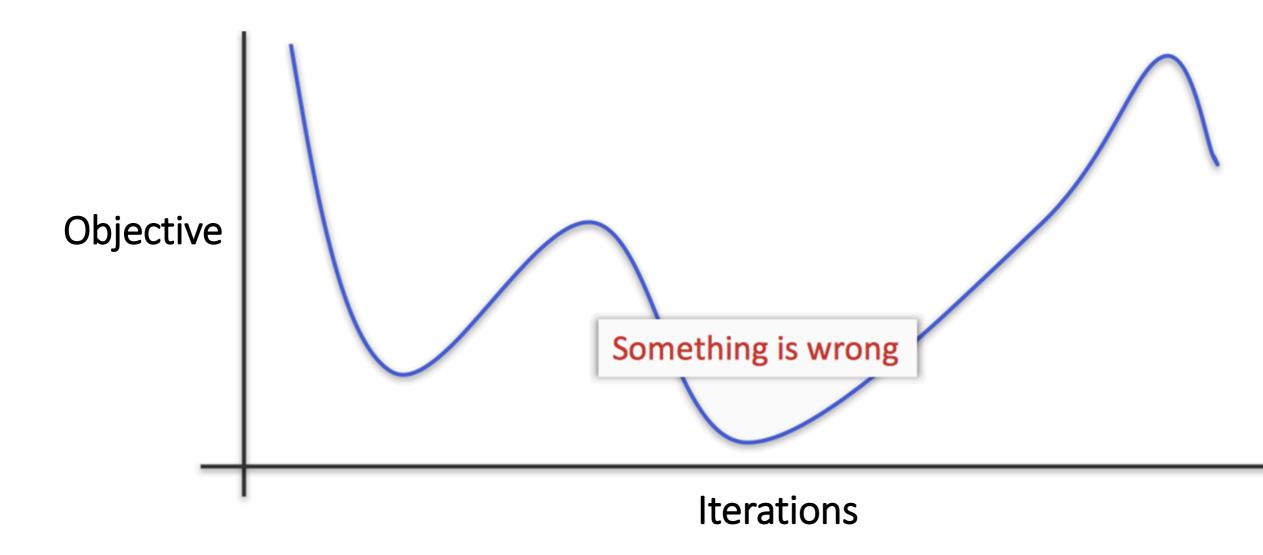
If learning is framed as an optimization problem, track the objective



How about here?

Has the model converged?

- If learning is framed as an optimization problem, track the objective
- Helps to debug: if we are doing gradient descent on a convex function the objective can't increase
- Important caveat: for SGD, the objective will slightly increase occasionally



Different ways to improve your model

- More training data → Helps with overfitting
- Features
 - 1. Use more features \rightarrow Helps with underfitting
 - 2. Use fewer features \rightarrow Helps with overfitting
 - 3. Use other features → Could help with overfitting and underfitting
- Better training
 - 1. Run for more iterations
 - 2. Use a different algorithm \rightarrow Track the objective for convergence
 - 3. Use a different classifier
 - 4. Play with regularization → Could help with overfitting and underfitting

Diagnostics

- ✓ Overfitting (high variance)
- ✓ Underfitting (high bias)
- ✓ Your learning does not converge
- Are you measuring the right thing?

What to measure?

- Accuracy of prediction is the most common measurement
- But if your dataset is unbalanced, accuracy may be misleading
 - 1,000 positive examples, 1 negative example
 - A classifier that always predicts positive will get 99.9% accuracy. Has it really learned anything?
- Unbalanced labels \rightarrow measure label specific precision, recall and F-measure
 - Precision for a label: among examples that are predicted with label, what fraction are correct
 - Recall for a label: among the examples with given ground truth label, what fraction are correct
 - F-measure: harmonic mean of precision and recall

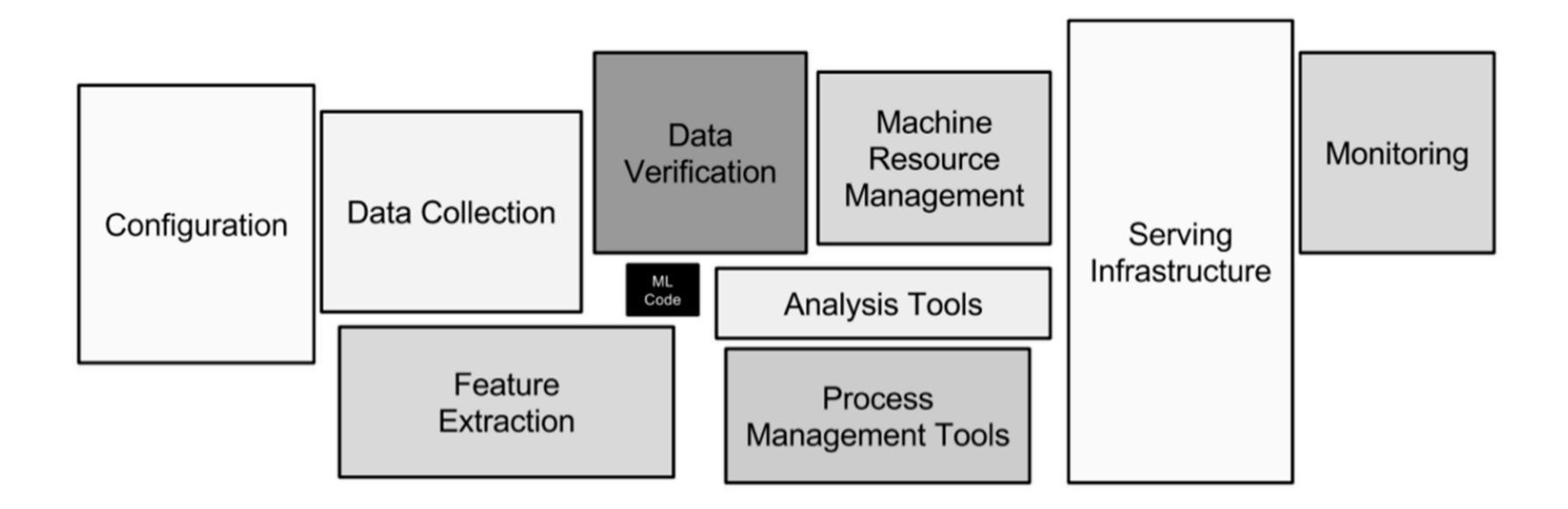
Diagnostics

- ✓ Overfitting (high variance)
- ✓ Underfitting (high bias)
- ✓ Your learning does not converge
- ✓ Are you measuring the right thing?

Outline

- Model diagnostics
- Error analysis
- Additional advice

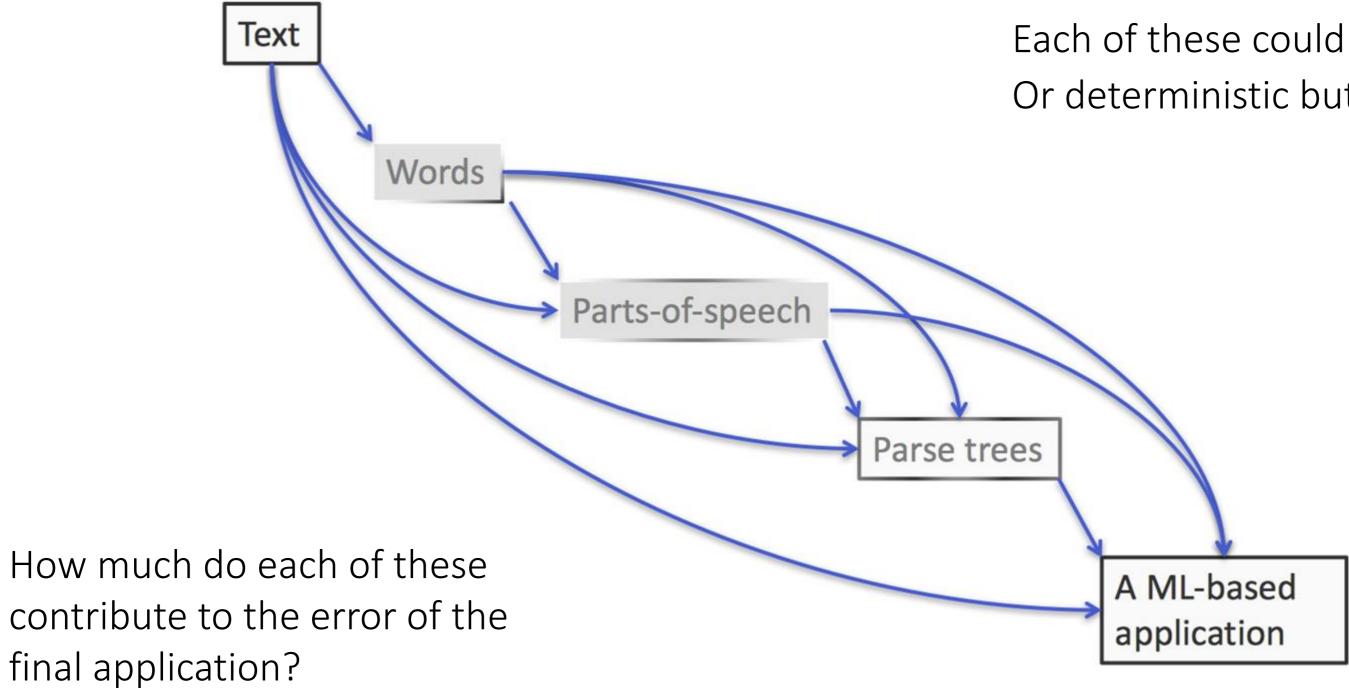
Machine learning in context



Error analysis

- Generally machine learning plays a small role in a larger application
 - Pre-processing
 - Feature extraction (possibly by other ML based methods)
 - Data transformations (possibly by other ML based methods)
- How much do each of these contribute to the error?
- **Error analysis** tries to explain why a system is not performing perfectly

Example: text processing system

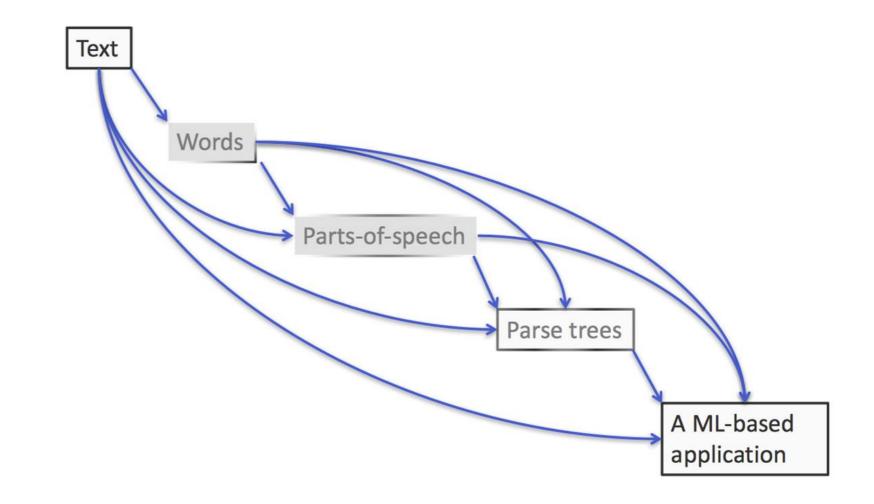


Each of these could be ML driven Or deterministic but still error prone

Example: text processing system

Plug in the ground truth for the intermediate components and see how much the accuracy of the final system changes

System	Accuracy
End-to-end predicted	55%
With ground truth words	60%
+ ground truth parts-of-speech	84%
+ ground truth parse trees	89%
+ ground truth final output	100%



Error analysis

- Explaining difference between the performance between a strong model and a much weaker one (a baseline)
- Usually seen with features
 - Suppose we have a collection of features and our system does well, but we don't know which features are giving us the performance
 - Evaluate simpler systems that progressively use fewer and fewer features to see which features give the highest boost

It is not enough to have a classifier that works; it is useful to know why it works Helps interpret predictions, diagnose errors and can provide and audit trail

Outline

- Model diagnostics
- Error analysis
- Additional advice

Advice for ML workflow in practice

- Say you want to build a classifier that identifies whether a basketball player belongs to the LA Lakers or Miami Heat
- How do you go about this?

The slow approach

1. Carefully identify features, get the best data, the best software architecture, maybe design a new learning algorithm

The hacker's approach 1. First implement something

- better

2. Implement it and hope it works

Advantage: perhaps a better approach, maybe even a new learning algorithm. Research.

Advantage: faster release, will have a solution for your problem quicker.

2. Use diagnostics to iteratively make it

Advice for ML workflow in practice

- Say you want to build a classifier that identifies whether a basketball player belongs to the LA Lakers or Miami Heat
- How do you go about this?

Be wary of premature optimization

Be equally wary of prematurely committing to a bad path

2. Implement it and hope it works

Advantage: perhaps a better approach, maybe even a new learning algorithm. Research.

Advantage: faster release, will have a solution for your problem quicker.

CS4641B Machine Learning | Fall 2020

What to watch out for?

- Do you have the right evaluation metric?
 - And does your loss function reflect it?
- **Beware of contamination:** ensure that your training data is not contaminated with the test set
 - Learning = generalization to new examples
 - Do not see your test set either. You may inadvertently contaminate the model
 - Beware of contaminating your features with the label!
 - Be suspicious of perfect predictors

What to watch out for?

- Beware of bias vs. variance tradeoff (or overfitting vs. underfitting)
- Beware that intuitions may not work in high dimensions
 - No proof by picture
 - Curse of dimensionality
- A theoretical guarantee may only be theoretical
 - May make invalid assumptions (e.g. if the data is separable)
 - May only be legitimate with infinite data (e.g. estimating probabilities)
 - Experiments on real data are equally important

What to watch out for?

- Learn simpler models first
- Ensembles seem to work better
- Think about whether your problem is learnable at all
 - Learning = generalization

THANK YOU!

CS4641B Machine Learning | Fall 2020

