The week ahead

- Quiz 11: means is 89% and average completion time 5 min.
- Quiz 12, Friday, Nov 20th 6am until Nov 22nd 11:59pm (midnight)
 - Practical advice
 - This quiz will have 10 questions (15min)
 - If you get 5 questions correctly, you get a full grade on it
- Touch-point 3: deliverables due Nov 22nd, live-event Mon, Nov 23rd
 - Single-slide presentation outlining progress highlights and current challenges
 - Three-minute pre-recorded presentation with your progress and current challenges
- Project final report due Dec 7th 11:59pm (midnight)
 - GitHub page with all of the results you have achieved utilizing both unsupervised learning and supervised learning
 - Final seven-minute long pre-recorded presentation

CS4641B Machine Learning Lecture 23: Convolutional neural networks

Rodrigo Borela ► rborelav@gatech.edu

Slides adapted from Ming Li (University of Waterloo) and Mahdi Roozbahani

Learning smaller network models

- We know it is good to learn a small model.
- From this fully connected model, do we really need all the edges?
- Can we exploit correlation between features in any way?

Consider learning an image classifier

- Some patterns are much smaller than the whole image
- Can represent a small region with fewer parameters

CS4641B Machine Learning | Fall 2020

"beak" detector

Building blocks

- Same pattern appears in different places: They can be compressed!
- What about training a lot of such "small" detectors and making them spatially independent (allowing them to "move around".)

"upper-left beak" detector

"middle beak" detector

Convolutional layers

- A CNN is a neural network with some convolutional layers (and some other layers)
- A convolutional layer has a number of filters that performs a convolutional operation

Example:

These are the network

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

.

Each filter detects a small pattern (3 x 3)

CS4641B Machine Learning | Fall 2020

parameters to be learned

Filter 1

Filter 2

•

1 -1 -1 1 -1 -1

stride=1

6 x 6 image

-1
-1
1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

1	-1
-1	1
-1	-1

3 -3

CS4641B Machine Learning | Fall 2020

-1
-1
1

 1
 -1

 -1
 1

 -1
 -1

stride=1

6 x 6 image

stride=1

6 x 6 image

Repeat this for each filter

1	-1
1	-1
1	-1

Filter 2

Two 4 x 4 images Forming 2 x 4 x 4 matrix

Color image: RGB 3 channels

Convolution vs. fully connected

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

image

1	-1	-1	-1
-1	1	-1	-1
-1	-1	1	-1

convolution

Fully-connected

Convolutional

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

•

CS4641B Machine Learning | Fall 2020

Only connect to 9 inputs, not fully connected

CS4641B Machine Learning | Fall 2020

Shared weights

O constrained to be identical

The complete CNN

Fully connected Feedforward network

Max pooling

CS4641B Machine Learning | Fall 2020

1	-1
1	-1
1	-1

Why pooling?

Subsampling pixels will not change the object

We can subsample the pixels to make image smaller \rightarrow fewer parameters to characterize the image

How does a CNN compress a fully connected network?

- Reducing number of connections
- Shared weights on the edges
- Max pooling further reduces the complexity

19

Max pooling

6 x 6 image

CS4641B Machine Learning | Fall 2020

Can repeat many times

The complete CNN

Fully connected Feedforward network

Only modified the *network structure* and *input format* (vector -> 3-D tensor)

CNN in Keras

Only modified the *network structure* and *input format* (vector -> 3-D array)

Only modified the *network structure* and *input format* (vector -> 3-D array)

Number of parameters

Result after Max Pooling

Result after Max Pooling

 $50 \times 3 \times 3 \times 25 + 50$ parameters

10 CNN Architecture

Example

https://www.cs.ryerson.ca/~aharley/vis/conv/

