The week ahead

- Quiz 10: means is 89% and average completion time 5 min.
- Assignment 4 due Wed, Nov 11th, 11:59 pm (midnight)
 - **Exceptional late policy:** No penalty until Mon, Nov 23rd, 11:59 pm
- Quiz 11, Friday, Oct 30th 6am until Nov 1st 11:59pm (midnight)
 - Neural networks

Coming up soon

- Touch-point 3: deliverables due Nov 22nd, live-event Mon, Nov 23rd
 - Single-slide presentation outlining progress highlights and current challenges
 - Three-minute pre-recorded presentation with your progress and current challenges
- Project final report due Dec 7th 11:59pm (midnight)
 - GitHub page with all of the results you have achieved utilizing both unsupervised learning and supervised learning
 - Final seven-minute long pre-recorded presentation

Supervised learning

- Regression
 - Linear regression
 - Regularized linear regression
 - Neural Networks
 - Regression trees*
 - Convolutional neural networks
- Classification
 - Logistic regression
 - Bayes classifiers
 - Decision tree and random forest
 - Support vector machines
 - Kernel SVM
 - Neural networks
 - Convolutional neural networks

CS4641B Machine Learning Lecture 21: Intro to neural networks

Rodrigo Borela ► rborelav@gatech.edu

These slides are from Vivek Srikumar, Chao Zhang and Mahdi Roozbahani

Outline

- **Building blocks**
- Neural Networks
- **Expressivity of Neural Networks**
- **Predicting with Neural Networks**
- Complementary reading: Bishop PRML Chapter 5, Section 5.1 to 5.3.3

Outline

- Building blocks
- Neural Networks
- Expressivity of Neural Networks
- Predicting with Neural Networks

5

Linear models for regression and classification

Linear models

- Learning (in general minimize loss)
 - Closed form solutions, gradient descent, stochastic gradient descent, etc.
- What if we could combine the these to achieve something more flexible?

$$= \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}) = h\left(\sum_{m=1}^M w_m \phi_m(\mathbf{x})\right)$$

dient descent, etc. g more flexible?

Building blocks

1

This is a two layer feed forward neural network

This is a **two layer** feed forward neural network

Hidden layer: what is going on here?

This is a **two layer** feed forward neural network

This is a **two layer** feed forward neural network

What if the inputs were the outputs of another network? We can make multiple layer networks

Outline

- Building blocks
- Neural Networks
- Expressivity of Neural Networks
- Predicting with Neural Networks

Neural networks

- A robust approach for approximating real-valued, discrete-valued or vector valued functions
- Among the most effective **general purpose** supervised learning methods currently known
 - Especially for complex and hard to interpret data such as real-world sensory data
- The **backpropagation algorithm** for neural networks has been shown successful in many practical problems
 - Handwritten character recognition, speech recognition, object recognition, some NLP problems

Inspiration from biological neurons

- Neurons: core components of brain and nervous system consisting of 1. Dendrites that collect information from other neurons
 - 2. An axon that generates outgoing spikes

The first drawing of brain cells by Santiago Ramon y Cajal (1899)

Artificial neurons

- Functions that very loosely mimic a biological neuron
- A neuron accepts a collection of inputs (vector \mathbf{x}) and produce an output by: 1. Applying a dot product with weights \mathbf{w}_i and adding a bias w_{i0} (activation)

$$a_j = \sum_{i=1}^{D} w_{ij}^{(layer)} x_i + w_{0j}^{(layer)}$$

2. Applying a (possibly non-linear) transformation called an **activation function**, $h(\cdot)$

 $z_i = h(a_i)$

3. Output unit activations

$$a_k = \sum_{i=1}^{D} w_{ij}^{(layer)} z_i + w_{0j}^{(layer)}$$

4. Output activation function

$$y_k = \sigma(a_k)$$

Artificial neurons

Activation Functions

$$z = h(a)$$

Name of neuron	Activation function:
Linear unit	a
Threshold/sign unit	sgn(a
Sigmoid unit	1
	$\overline{1 + \exp(}$
Rectified linear unit (ReLU)	max(0,
Tanh unit	tanh(a

Many more activation functions exist (sinusoid, soft-max, Gaussian, polynomial, etc.)

Neural networks

- A function that converts inputs to outputs defined by a **directed acyclic graph**
 - Nodes organized in layers correspond to neurons
 - Edges carry output of one neuron to another, associated with weights
- To define a neural network, we need to specify:
 - The structure of the graph
 - How many nodes, the connectivity
 - The activation function on each node
 - The edge weights

Neural networks

- The structure of the graph
 - Called the architecture of the network
 - Typically predefined, part of the design of the classifier
- The edge weights
 - Learned from data

A brief history of neural networks

- 1943: McCullough and Pitts showed how linear threshold units can compute logical functions
- 1949: Hebb suggested a learning rule that has some physiological plausibility
- 1950s: Rosenblatt, the perceptron algorithm for a single threshold neuron
- 1969: Minsky and Papert studied the neuron from a geometrical perspective
- 1980s: Convolutional neural networks (Fukushima, LeCun), the backpropagation algorithm (various)
- 2003: More compute, more memory, more data, deeper networks

Outline

- Building blocks
- Neural Networks
- Expressivity of neural networks
- Predicting with neural networks

A single neuron with sign activation function

 $Prediction = sgn(w_1x_1 + w_2x_2 + w_0)$

CS4641B Machine Learning | Fall 2020

+++ ++

Two layers with sign activation function

Figure from [Shai Shalev-Shwartz and Shai Ben-David, 2014]

CS4641B Machine Learning | Fall 2020

In general, convex polygons

Three layers with sign activation function

Figure from [Shai Shalev-Shwartz and Shai Ben-David, 2014]

In general, unions of convex polygons

What if I don't know?

https://playground.tensorflow.org/

NNs and universal function approximators

- Any continuous function can be approximated to arbitrary accuracy using one hidden layer of sigmoid units (Cybenko, 1989)
- Approximation error is insensitive to the choice of activation functions (DasGupta et al. 1993)

Outline

- Building blocks
- Neural networks
- Expressivity of neural networks
- Predicting with neural networks

Predicting with neural nets

We will use this example network to introduce the general principle of how to make predictions with a neural network

Predicting with neural nets

Naming conventions for this example Inputs: x Hidden: z Output: y

Predicting with neural nets

Predicting with neural nets: the forward pass

Given an input **x**, how is the output predicted?

The forward pass

Given an input **x**, how is the output predicted?

$z_1 = h \left(w_{01}^h + w_{11}^h x_1 + w_{21}^h x_2 \right)$

The forward pass

$$z_{1} = h (w_{01}^{h} + v)$$
$$z_{2} = h (w_{02}^{h} + v)$$

CS4641B Machine Learning | Fall 2020

Given an input **x**, how is the output predicted?

 $w_{11}^{h} x_1 + w_{21}^{h} x_2) \\ w_{12}^{h} x_1 + w_{22}^{h} x_2)$

The forward pass

Given an input **x**, how is the output predicted?

$$z_{1} = h(w_{01}^{h} + v)$$
$$z_{2} = h(w_{02}^{h} + v)$$

$$y = \sigma (w_{01}^o + v)$$

Assuming a linear output activation function :

$$y = w_{01}^o + w$$

 $w_{11}^{h} x_1 + w_{21}^{h} x_2) \\ w_{12}^{h} x_1 + w_{22}^{h} x_2)$

 $w_{11}^0 z_1 + w_{21}^h z_2$

 $v_{11}^0 z_1 + w_{21}^h z_2$