
Happy Thursday!
▪ Quiz 10, Friday, Oct 30th 6am until Nov 1st 11:59pm (midnight)
▪ SVM and Kernel SVM

▪ Touch-point 2: deliverables due Nov 1st, live-event Mon, Nov 2nd

▪ Single-slide presentation outlining progress highlights and current challenges 
▪ Three-minute pre-recorded presentation with your progress and current challenges

▪ Project midpoint report due Nov 6th 11:59pm (midnight)
▪ GitHub page with the results you have achieved utilizing unsupervised learning
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Coming up soon



These slides are based on slides from Yaser Mostafa, Le Song and Eric Eaton and Mahdi Roozbahani

CS4641B Machine Learning

Lecture 20: Kernel SVM
Rodrigo Borela ‣ rborelav@gatech.edu



Outline
▪ Kernel method
▪ Soft SVM

▪ Complementary reading: Bishop PRML – Chapter 7, Section 7.1.1 to 7.1.3
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Outline
▪ Kernel method
▪ Soft SVM
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Recap: SVM
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𝐰 = 

𝑛=1

𝑁

𝑎𝑛𝑡𝑛𝐱𝑛

Since 𝑎𝑛 = 0 if 𝐱𝑛 is not a support 
vector, and 𝑎𝑛 > 0if it is a support 
vector:

𝐰 = 

𝑥𝑛 ∈ 𝑆𝑉

𝑎𝑛𝑡𝑛𝐱𝑛

and for 𝑏 pick any support vector 
and calculate: 𝑡𝑛 𝐰𝑇𝐱 + 𝑏 = 1

Training Testing

For a new test point 𝐱, compute:

𝑓 𝐱 = 𝐰𝑇𝐱 + 𝑏 = 

𝑛=1

𝑁

𝑎𝑛𝑡𝑛𝐱𝑛
𝑇𝐱 + 𝑏

Since 𝑎𝑛 = 0 if 𝐱𝑛 is not a support vector, 
and 𝑎𝑛 > 0 if it is a support vector:

𝑓 𝐱 = 

𝑥𝑛 ∈ 𝑆𝑉

𝑎𝑛𝑡𝑛𝐱𝑛
𝑇𝐱 + 𝑏

Classify 𝐱 as class 1 if the result is 
positive, and class 2 otherwise
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Kernel trick

Soft Margin SVM 
(allowing ourselves to make errors)

Handling non-linearly separable data
Linear classifier on original feature space

min
𝐰,𝛏

1

2
𝐰 2 + 𝐶

𝑛=1

𝑁

𝜉𝑛

subject to

𝑡𝑛 𝑤𝑇𝑥𝑛 + 𝑏 ≥ 1 − 𝜉𝑛
𝜉𝑛 ≥ 0

, for 𝑛 = 1,… ,𝑁

Introduce slack variables

ሚℒ 𝐚 =

𝑛=1

𝑁

𝑎𝑛 −
1

2


𝑛=1

𝑁



𝑚=1

𝑁

𝑡𝑛𝑡𝑚𝑎𝑛𝑎𝑚𝑘(𝐱𝑛, 𝐱𝑚)

subject to
𝑎𝑛 ≥ 0

σ𝑚=1
𝑁 𝑎𝑛𝑡𝑛 = 0

, for 𝑛 = 1,… ,𝑁
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𝜙2 𝐱 = 𝛽

𝛽

Idea 1: Use polar coordinates to go to 𝝓(𝐱)-space

𝜙1 𝐱 = 𝑟

▪ Data is linearly separable in polar coordinates
▪ Acts non-linearly in original space

▪ 𝝓:
𝑥1
𝑥2

→
𝑟
𝛽 , ℝ2 → ℝ2
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▪ 𝝓:
𝑥1
𝑥2

→

𝑥1
2

𝑥2
2

2𝑥1𝑥2

, ℝ2 → ℝ3

▪ Data is linearly separable in 3D
▪ This means that the problem can still be solved by a linear classifier

𝑍2= 𝑍1=

Idea 1: Map data to higher dimension 𝝓(𝐱)-space

𝜙3 𝐱 = 2𝑥1𝑥2

𝜙1 𝐱 = 𝑥1
2𝜙2 𝐱 = 𝑥2

2
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▪ 𝝓: 𝐱 → 𝝓 𝐱 , ℝ𝐷 → ℝ𝑃

▪ Learn classifier linear in 𝐰 for ℝ𝑃:

𝑓 𝐱 = 𝐰𝑻𝝓 𝐱 + 𝑏

▪ 𝝓 𝐱 is a basis function (or feature map)

SVM in a transformed feature space

ℝ𝐷
ℝ𝑃
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max
𝐚



𝑛=1

𝑁

𝑎𝑛 −
1

2


𝑛=1

𝑁



𝑚=1

𝑀

𝑡𝑛𝑡𝑚𝑎𝑛𝑎𝑚𝝓 𝐱𝑛
𝑇𝝓(𝐱𝑚)

subject to: 
𝑎𝑛 ≥ 0

σ𝑛=1
𝑁 𝑎𝑛𝑡𝑛 = 0

, for 𝑛 = 1,… ,𝑁

▪ We already have this:
𝑡1𝑡1𝝓 𝐱1

𝑇𝝓(𝐱1) 𝑡1𝑡2𝝓 𝐱1
𝑇𝝓(𝐱2) … 𝑡1𝑡𝑁𝝓 𝐱1

𝑇𝝓(𝐱𝑁)

𝑡2𝑡1𝝓 𝐱2
𝑇𝝓(𝐱1)

…
𝑡𝑁𝑡1𝝓 𝐱𝑁

𝑇𝝓(𝐱1)

𝑡2𝑡2𝝓 𝐱2
𝑇𝝓(𝐱2)

…
𝑡𝑁𝑡2𝝓 𝐱𝑁

𝑇𝝓(𝐱2)

…
…
…

𝑡2𝑡𝑁𝝓 𝐱2
𝑇𝝓(𝐱𝑁)

…
𝑡𝑁𝑡𝑁𝝓 𝐱𝑁

𝑇𝝓(𝐱𝑁)

▪ Same result as hard SVM:
▪ Solve 𝑎𝑛 using quadratic programming and predict a test data point in 𝝓(𝐱)-space

𝑓 𝐱 = 

𝑥𝑛 ∈ 𝑆𝑉

𝑎𝑛𝑡𝑛𝝓 𝐱𝑛
𝑇𝝓(𝐱) + 𝑏

Kernel trick – what do we need from 𝝓(𝐱)-space?
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Generalized inner product
▪ Given two points 𝐱1 and 𝐱2, we need 𝝓 𝐱 𝑇𝝓(𝐲)

𝑡𝐱
2𝑘(𝐱, 𝐱) 𝑡𝐱𝑡𝐲𝑘(𝐱, 𝐲)

𝑡𝐲𝑡𝐱𝑘(𝐲, 𝐱) 𝑡𝐲
2𝑘(𝐲, 𝐲)

▪ Let 𝝓 𝐱 𝑇𝝓 𝐲 = 𝑘(𝐱, 𝐲)
▪ Example:

▪ Consider 𝐱 =
𝑥1
𝑥2

→ ℝ2

𝑘 𝐱, 𝐲 = 1 + 𝐱𝑇𝐲 2 = 1 + 𝑥1 𝑥2
𝑦1
𝑦2

2

= 1 + 𝑥1𝑦1 + 𝑥2𝑦2
2

= 1 + 2𝑥1𝑦1 + 2𝑥2𝑦2 + 𝑥1
2𝑦1

2 + 2𝑥1𝑦1𝑥2𝑦2 + 𝑥2
2𝑦2

2

= 1, 2𝑥1, 2𝑥2, 𝑥1
2, 2𝑥1𝑥2, 𝑥2

2 1, 2𝑦1, 2𝑦2, 𝑦1
2, 2𝑦1𝑦2, 𝑦2

2 𝑇
= 𝝓 𝐱 𝑇𝝓 𝐲
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Polynomial kernel
▪ 𝐱 ∈ ℝ𝐷 and 𝝓:ℝ𝐷 → ℝ𝑄 is polynomial of order 𝑄
▪ The equivalent kernel = 𝑘 𝐱, 𝐲 = 1 + 𝐱𝑇𝐲 𝑄 = 1 + 𝑥1𝑦1 + 𝑥2𝑦2 +⋯+ 𝑥𝐷𝑦𝐷

𝑄

▪ (Inhomogeneous kernel)

▪ Does it matter if 𝑄 is 2 or 1000?

▪ What will happen if we have 𝐷 = 10 and 𝑄 = 100 and we want to compute the inner 
product explicitly?

▪ We need to calculate the inner product of two big huge ugly vectors
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We only need 𝝓-space to exist
▪ If 𝑘 𝐱, 𝐲 is an inner product in some 𝝓-space, we are doing good

▪ Example:
▪ 𝑘 𝐱, 𝐲 = exp −𝛾 𝐱 − 𝐲 2 Radial basis kernel
▪ First thing first, this is a function of 𝐱 and 𝐲
▪ This function will take us to infinite-dimensional feature space → PARTY!  
▪ For 𝐷 and 𝛾 = 1

𝑘 𝐱, 𝐲 = exp −(𝐱 − 𝐲 2) = exp −𝐱𝑇𝐱 exp (−𝐲𝑇𝐲)

𝑘=0

∞
2𝑘𝐱𝑘𝐲𝑘

𝑘!
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Slightly non-linearly separable case for 100 datapoints: 

Radial basis kernel in action
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Transforming 𝐱 into an ∞-dimensional space
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Generalization
▪ Are we killing the generalization by going 

to infinite-dimension? (overfitting)

▪ What will happen if we have many 
support vectors?

▪ The decision boundary line (plane) will 
be super wiggly → overfitting alarm

▪ Ε 𝐸out ≤
Ε[𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠]

𝑁−1

▪ 𝑁 is number of datapoints
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▪ Remember quadratic programming?

▪ In 𝝓 𝐱 -space, the only thing you need: 

𝑡1𝑡1𝐱1
𝑇𝐱1 𝑡1𝑡2𝐱1

𝑇𝐱2 … 𝑡1𝑡𝑁𝐱1
𝑇𝐱𝑁

𝑡2𝑡1𝐱2
𝑇𝐱1

…
𝑡𝑁𝑡1𝐱𝑁

𝑇𝐱1

𝑡2𝑡2𝐱2
𝑇𝐱2

…
𝑡𝑁𝑡2𝐱𝑁

𝑇𝐱2

…
…
…

𝑡2𝑡𝑁𝐱2
𝑇𝐱𝑁

…
𝑡𝑁𝑡𝑁𝐱𝑁

𝑇𝐱𝑁

Quadratic coefficients

𝑡1𝑡1𝑘(𝐱1, 𝐱1) 𝑡1𝑡2𝑘(𝐱1, 𝐱2) … 𝑡1𝑡𝑁𝑘(𝐱1, 𝐱𝑁)
𝑡2𝑡1𝑘(𝐱2, 𝐱1)

…
𝑡𝑁𝑡1𝑘(𝐱𝑁, 𝐱1)

𝑡2𝑡2𝑘(𝐱2, 𝐱2)
…

𝑡𝑁𝑡2𝑘(𝐱𝑁, 𝐱2)

…
…
…

𝑡2𝑡𝑁𝑘(𝐱2, 𝐱𝑁)
…

𝑡𝑁𝑡𝑁𝑘(𝐱𝑁, 𝐱𝑁)

Kernel formulation of SVM
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Final stage
𝑓 𝐱 = sign(𝐰𝑇𝝓(𝐱) + 𝑏), with 𝐰 = σ𝐱𝑛∈𝑆𝑉

𝑎𝑛𝑡𝑛𝜙(𝐱n)

Equivalent to:

𝑓 𝐱 = sign 

𝐱𝑛∈𝑆𝑉

𝑎𝑛𝑡𝑛𝜙 𝐱𝑛
𝑇𝜙 𝐱 + 𝑏

In terms of 𝑘(−,−)

𝑓 𝐱 = sign 

𝐱𝑛∈𝑆𝑉

𝑎𝑛𝑡𝑛𝑘 𝐱𝑛, 𝐱 + 𝑏

𝑏 = 𝑡𝑖 − 

𝐱𝑖,𝐱𝑗∈𝑆𝑉

𝑎𝑗𝑡𝑗𝑘 𝐱𝑖 , 𝐱𝑗
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How do we know that the kernel is valid?
▪ For a given 𝑘 𝐱, 𝐲 → We can check the validity 
▪ Three approaches:

1. By construction (Polynomial one)
2. Math properties (Mercer’s condition)
3. Who cares? ☺
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Design your kernel
▪ 𝑘 𝐱, 𝐲 is valid iff

1. It is symmetric → 𝑘 𝐱, 𝐲 = 𝑘 𝐲, 𝐱

2. The matrix: 

𝑡1𝑡1𝑘(𝐱1, 𝐱1) 𝑡1𝑡2𝑘(𝐱1, 𝐱2) … 𝑡1𝑡𝑁𝑘(𝐱1, 𝐱𝑁)
𝑡2𝑡1𝑘(𝐱2, 𝐱1)

…
𝑡𝑁𝑡1𝑘(𝐱𝑁, 𝐱1)

𝑡2𝑡2𝑘(𝐱2, 𝐱2)
…

𝑡𝑁𝑡2𝑘(𝐱𝑁, 𝐱2)

…
…
…

𝑡2𝑡𝑁𝑘(𝐱2, 𝐱𝑁)
…

𝑡𝑁𝑡𝑁𝑘(𝐱𝑁, 𝐱𝑁)

is positive-semi definite, for any 𝐱1, … , 𝐱𝑁
(Mercer’s condition)
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Common kernels
▪ Linear kernels 𝑘 𝐱, 𝐲 = 𝐱𝑇𝐲

▪ Polynomial kernels 𝑘 𝐱, 𝐲 = 1 + 𝐱𝑇𝐲 𝑄 for any 𝑄 > 0
▪ Contains all polynomial terms up to degree 𝑄

▪ Gaussian kernels 𝑘 𝐱, 𝐲 = exp −
𝐱−𝐲 2

2

2𝜎2
for 𝜎 > 0

▪ Infinite dimensional features space
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Generalized inner product
▪ Primal version of classifier

𝑓 𝐱test = 𝐰𝑻𝝓 𝐱test + 𝑏

▪ Dual version of classifier

𝑓 𝐱test = 

𝑥𝑛 ∈ 𝑆𝑉

𝑎𝑛𝑡𝑛𝝓 𝐱𝑛
𝑇𝝓(𝐱test) + 𝑏
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Kernel SVM: summary
▪ Classifiers can be learnt for high dimensional feature spaces, without actually having to 

map the points into the high dimensional space

▪ Data may be linearly separable in the high dimensional space, but not linearly 
separable in the original feature space

▪ Kernels can be used for an SVM because of the scalar product in the dual form, but can 
also be used elsewhere – they are not tied to the SVM formalism 
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Outline
▪ Kernel method
▪ Soft SVM
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Kernel will deal with thisSoft SVM will deal with this

Soft SVM – two types of non-separability

slight serious
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Non-violated case Margin violation
Error measure

▪ if 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 > 1 → Non SV

▪ Let’s introduce a slack variable: 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 ≥ 1 − 𝜉𝑛,      𝜉𝑛 ≥ 0

▪ Total violation = σ𝑛=1
𝑁 𝜉𝑛
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The new optimization

min
𝐰,𝛏

1

2
𝐰 2 + 𝐶

𝑛=1

𝑁

𝜉𝑛

subject to

𝑡𝑛 𝑤𝑇𝑥𝑛 + 𝑏 ≥ 1 − 𝜉𝑛
𝜉𝑛 ≥ 0

, for 𝑛 = 1,… , 𝑁
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Lagrange formulation
▪ Hard SVM:

min
𝐰,𝑏

1

2
𝐰 2

𝑠. 𝑡. 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 ≥ 1

ℒ 𝐰, 𝑏, 𝐚 =
1

2
𝐰 2 −

𝑛=1

𝑁

𝑎𝑛 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 − 1

▪ Soft SVM:

min
𝐰,𝛏

1

2
𝐰 2 + 𝐶

𝑛=1

𝑁

𝜉𝑛

𝑠. 𝑡. 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 ≥ 1 − 𝜉𝑛 and 𝜉𝑛 ≥ 0

ℒ 𝐰, 𝑏, 𝛏, 𝐚 =
1

2
𝐰 2 + 𝐶

𝑛=1

𝑁

𝜉𝑛 −

𝑛=1

𝑁

𝑎𝑛 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 − 1 + 𝜉𝑛 −

𝑛=1

𝑁

𝛽𝑛𝜉𝑛
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ℒ 𝐰, 𝑏, 𝛏, 𝐚 =
1

2
𝐰 2 + 𝐶

𝑛=1

𝑁

𝜉𝑛 −

𝑛=1

𝑁

𝑎𝑛 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 − 1 + 𝜉𝑛 −

𝑛=1

𝑁

𝛽𝑛𝜉𝑛

▪ Minimize w.r.t 𝐰, 𝑏, 𝑎𝑛𝑑 𝛏 and maximize w.r.t 𝑎𝑛 ≥ 0 𝑎𝑛𝑑 𝛽𝑛 ≥ 0
▪ Let’s do the minimization:

𝛻𝐰 ℒ 𝐰, 𝑏, 𝛏, 𝐚 = 𝐰 −

𝑛=1

𝑁

𝑎𝑛𝑡𝑛𝐱𝑛 = 0

𝛻𝑏 ℒ 𝐰, 𝑏, 𝛏, 𝐚 = −

𝑛=1

𝑁

𝑎𝑛𝑡𝑛 = 0

𝛻𝛏 ℒ 𝐰, 𝑏, 𝛏, 𝐚 = 𝐶 − 𝑎𝑛 − 𝛽𝑛

▪ If we substitute 𝛽𝑛 up there, the whole formulation will get back to hard SVM

Lagrange formulation
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Solution
▪ 𝛽𝑛 = 𝐶 − 𝑎𝑛
▪ 𝛽𝑛 ≥ 0 → 𝐶 − 𝑎𝑛 ≥ 0 → 0 ≤ 𝑎𝑛 ≤ 𝐶, for 𝑛 = 1,… , 𝑁

max
𝐚

ℒ 𝐚 = 

𝑛=1

𝑁

𝑎𝑛 −
1

2


𝑛=1

𝑁



𝑚=1

𝑁

𝑡𝑛𝑡𝑚𝑎𝑛𝑎𝑚𝐱𝑛
𝑇𝐱𝑚

subject to

0 ≤ 𝑎𝑛 ≤ 𝐶

σ𝑚=1
𝑁 𝑎𝑛𝑡𝑛 = 0

, for 𝑛 = 1,… ,𝑁

▪ Minimize: 
1

2
𝐰𝑇𝐰+ Cσ𝑛=1

𝑁 𝜉𝑛 → 𝐰 = σ𝑛=1
𝑁 𝑎𝑛𝑡𝑛𝐱𝑛
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Types of support vectors

0 < 𝑎𝑛 < 𝐶

0 < 𝑎𝑛 < 𝐶

0 < 𝑎𝑛 < 𝐶

𝑎𝑛 = 𝐶

𝑎𝑛 = 0 → 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 > 1

𝑎𝑛 = 𝐶 → 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 < 1

0 < 𝑎𝑛 < 𝐶 → 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 = 1
SV on the margin

SV on the wrong side

Non SV

▪ We call the three points as margin support vectors
0 < 𝑎𝑛 < 𝐶

𝛽𝑛 = 𝐶 − 𝑎𝑛

𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 = 1 → 𝛽𝑛 > 0 → 𝜉𝑛 = 0
(KKT condition)

▪ Non-margin support vectors (𝑎𝑛= 𝐶)
𝛽𝑛 = 0 → 𝜉𝑛 > 0

(KKT condition)

𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 > 1 − 𝜉𝑛 if    𝜉𝑛 > 0
𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 < 1

▪ Any violating points become support vectors
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violating points become support vectors

How to define the hyper-parameter C → cross-validation  

How to choose C?
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