Happy Thursday!

= Quiz 10, Friday, Oct 30t 6am until Nov 15t 11:59pm (midnight)
" SVM and Kernel SVM

Coming up soon

= Touch-point 2: deliverables due Nov 1%, live-event Mon, Nov 2"
= Single-slide presentation outlining progress highlights and current challenges
" Three-minute pre-recorded presentation with your progress and current challenges

=  Project midpoint report due Nov 6t 11:59pm (midnight)
" GitHub page with the results you have achieved utilizing unsupervised learning
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Rodrigo Borela » rborelav@gatech.edu

These slides are based on slides from Yaser Mostafa, Le Song and Eric Eaton and Mahdi Roozbahani



Outline

=  Kernel method
= Soft SVM

»  Complementary reading: Bishop PRML — Chapter 7, Section 7.1.1to 7.1.3
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Outline

= Kernel method
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Recap: SVM

linearly separable data
©

A

Support Vector@f

® ®
wx+b=1 - W
wix+b=0

wix+b=-1
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Training Testing

N
w=Y e,
n=1

Since a,, = 0 if X,, is not a support
vector, and a,, > Oif it is a support

For a new test point X, compute:

N
fx)=wlx+b = Z a,t, X' X+ b
n=1

vector: Since a,, = 0 if X,, is not a support vector,
and a,, > 0 ifitis a support vector:
W = Z a,t,X,
Xp € SV f(x) = 2 a,t,X X+ b
Xn €SV

and for b pick any support vector

Classity x lass 1 if th It
and calculate: t,(WTx + b) = 1 assify X as class 1 if the result is

positive, and class 2 otherwise
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Handling non-linearly separable data

Linear cIa55|f|er on orlglnal feature space

A A
‘L A AA
o® A 2 t tmanamk(xn:xm)
0 @

'... A n=1 n=1ms=
[ A .
Seee 4 subject to Kernel trick
A a, =0
Afja, N forn=1,.. N
m=10antn =0
Introduce slack variables
® o A A N

o %o |A A, 1 :
* ehe| aaa 4 min= [Iwll2 + 2 £ Soft Margin SVM

® w,

o® °|A 1“ (allowing ourselves to make errors)
o ®| A AA

A subject to

t,(wlx, + b) >1—
$n 2

5", forn=1,..,N
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ldea 1: Use polar coordinates to go to ¢p(x)-space

< >
A $,(x) = [ A O 0
X, e N
¢ A
® ® A
4 A
A
— TLLLLLL . . ‘
0 A ° A,
° b A A A
. e ® A A
L Aa R
| > >
0 X $1(x) =71

= Datais linearly separable in polar coordinates
= Acts non-linearly in original space

" ¢:(2)—>(£), R? - R?
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ldea 1: Map data to higher dimension ¢(x)-space

2
Xq X1
) (I’(x)_) v | RE-R
2
VZx,x,
A
X, A A A
A
A . A
A o oe A
0_ N ..-.I' N
I. A
A
N A
A, A A
I
0

= Datais linearly separable in 3D
" This means that the problem can still be solved by a linear classifier
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SVM in a transformed feature space

= p:x-> px), RP-SR”
= |earn classifier linear in w for R

fx)=wlep(x) +b
= ¢(X) is a basis function (or feature map)
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Kernel trick — what do we need from ¢ (x)-space?

N , N M
maaXE an _EZ Z tntmanam¢(xn)T¢(xm)
n=1 n=1m=1
| a, =0
subject to: oy forn=1,.., N
n=1anln =

= We already have this:
X)) TP(x) it dx) TP .. ity (x) TP (xy)
Lt (X)) P(x1) (X)) P(x2) - trityd(x) P (xpy)

-tNt1¢(X;\./.)T¢(X1) tNtzflb(X;\./.)Tqb(Xz) tNtN¢(X;\.I.)T¢(XN)-

= Same result as hard SVM:
= Solve a,, using quadratic programming and predict a test data point in ¢p(X)-space

FOO= ) antad(x) () +b

Xn €SV
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Generalized inner product

= Given two points X; and X,, we need ¢(x)! ¢p(y)
k(X X)  tetyk(Xy)
tytxk(y,X)  tyk(y,y)

" letp(X) P(y) = k(x,y)

= Example:
: X1 2
= Considerx = [x ] - R
2
2
kGoy) = (L +xTy)2 = (141 %l [JH) = (1 +x0y; +12)7
=14 2x1Y1 + 2X3Y, + X7Y§ + 2X1Y1%2Y, + X5V5

T
— [1'ﬁxl»ﬁxz:x%»‘/Ex1x2;x22][1:\/§)’1;\/E)’z»)ﬁz:‘/i)’ﬂ’z»hz] = ¢(X)T¢(Y)
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Polynomial kernel

= x € R and ¢p: RP? —» RY is polynomial of order Q
= The equivalent kernel = k(x,y) = (1 +x'y)? = (1 + x1y; + x5, + -+ xpyp)¥
" (Inhomogeneous kernel)

" Does it matterif Q is 2 or 10007

= What will happen ifwe have D = 10 and Q = 100 and we want to compute the inner
product explicitly?

" We need to calculate the inner product of two big huge ugly vectors
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We only need ¢-space to exist

» |f k(X,y)is an inner product in some ¢p-space, we are doing good

" Example:
= k(x,y) = exp(—y||x — y||?) Radial basis kernel
" First thing first, this is a function of X and y
" This function will take us to infinite-dimensional feature space — PARTY!
" ForDandy =1

k

Y
k(x,y) = exp(—(x —y)*) = exp(—x"x) exp (=y"y) Z )/i!y
k=0
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Radial basis kernel in action

Slightly non-linearly separable case for 100 datapoints:
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Transforming X into an co-dimensional space
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Generalization

Are we killing the generalization by going
to infinite-dimension? (overfitting)

What will happen if we have many
support vectors?

The decision boundary line (plane) will
be super wiggly — overfitting alarm

E|[Number of support vectors]
N—1

E[Equt] <

N is number of datapoints
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Kernel formulation of SVM

" Remember quadratic programming?

it XIx, titxIx, titnXi Xy |
Lt XoX, byt XhX, Loty Xe Xy
tyt XXy tnEa XX EnEn XXy

Quadratic coefficients

" |n ¢(x)-space, the only thing you need:
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" bt k(Xq,X4)
trt1k(X5,X1)

vtk (Xpy, X1)

tit,k(Xq,X3)
trtrk (X2, X5)

tntok (XN, X2)

titnk(Xq,Xy)
trtnk(Xy, Xpy)

ENENK (XN, X ).
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Final stage

f(x) = sign(w' @p(x) + b), with w = anESV Antn®(Xn)

Equivalent to:

FO0) = sign( D antnp ()T S0 + b)

Xn €SV

In terms of k(—, —)

f(x) = sign( Z a,t k(x,,X) + b)

Xn €SV

b = ti — z ajtjk(xi,xj)

Xi,XjESV
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How do we know that the kernel is valid?

* Foragiven k(X,y) = We can check the validity
" Three approaches:

1. By construction (Polynomial one)

2. Math properties (Mercer’s condition)

3. Who cares? ©
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Design your
» k(x,y) is valid iff

kernel

1. It is symmetric = k(X,y) = k(y, x)

2. The matrix:

- tyt1k(Xq,Xq)
tat k(X2 X1)
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tntik (X, X1)

titk(X1,X7)
Ltk (X2, X2)

tytok (X, X2)

titnk(Xq,Xpy)
trtnk (X2, Xy)

tntnk (X, Xy).

IS positive-semi definite, for any X4, ..., Xy

(Mercer’s condition)
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https://en.wikipedia.org/wiki/Definiteness_of_a_matrix

Common kernels

= Linear kernels k(x,y) = x'y

= Polynomial kernels k(x,y) = (1 + xTy)? forany Q > 0
= Contains all polynomial terms up to degree

o2
= Gaussian kernels k(x,y) = exp ( Ix Y”z) fora > 0

202
" |nfinite dimensional features space
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Generalized inner product

= Primal version of classifier
f(Xtest) — WT¢(Xtest) + b

» Dual version of classifier

f Ktest) = 2 antn¢(xn)T¢(Xtest) +b

Xn €SV
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Kernel SVM: summary

= (Classifiers can be learnt for high dimensional feature spaces, without actually having to
map the points into the high dimensional space

= Data may be linearly separable in the high dimensional space, but not linearly
separable in the original feature space

= Kernels can be used for an SVM because of the scalar product in the dual form, but can
also be used elsewhere — they are not tied to the SVM formalism
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Outline

= Soft SVM
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Soft SVM — two types of non-separability

slight serious

Soft SVM will deal with this Kernel will deal with this
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Error measure

Non-violated case Margin violation

= ift,(w/'x,+b)>1-> NonSV
= |let’sintroduce a slack variable: t,(w'x, +b) >1-§&,, &, >0

= Total violation = Z,’¥=1 én
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The new optimization

2
mln W

+cz.$n

subject to

ta(wlix, +b) =1 —
$n =0
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5”, forn =1, ...
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Lagrange formulation

= Hard SVM:

min —
wb 2

|2

s.t. t,(wlx,+b)>1
N

£w,b,) = S |WI2 = Y au{ta(w'x, +b) — 1}

2

n=1

= Soft SVM:

s.t.  t,(wl'x, +b)

N
1
Lw, b, a) =5 [Iwl? + cz £ - Z
n=1

n=1
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N
an{tn(wan T b) -1+ fn} R Z ,ann
n=1
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Lagrange formulation

N

N N
1
L(w, Db, S, a) = E ”WHZ + C 2 $n — Z an{tn(WTXn +b)—1+ En} — Z Bnén
n=1 n=1

n=1

= Minimize w.rt w, b, and & and maximize w.rta,, = 0and f,, = 0
" |et’s do the minimization:

Vw LW, b, &, a) = w

|
Mz
Q
S
”
S
™
]
1
o

N
v, L(w,b,Ea) = — Z a,t, =0

Vélxymlhzka)::(j_'an'_l%l

" |f we substitute 5,, up there, the whole formulation will get back to hard SVM
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Solution

ﬁnzc_an
f,=20-C—a,=20-0<ag,<(C,forn=1,..,,N

maxL(a = Z —5 Z Z bt Oy Ay X X

2

n=1 n=1ms=
subject to
0<a,<C
forn=1,...,N

N _
m=1antn =0

1
» Minimize:=ww+CYN_. & sw=YN__a t X
» n=1%n n=1ntnXn
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Types of support vectors

= We call the three points as margin support vectors
0<a,<C

bn =C—ay

t,(Wwlx, +b)=1-8,>0-5¢&, =0
(KKT condition)

= Non-margin support vectors (a,= C)
bn=0-¢,>0
(KKT condition)

t,(wl'x, +b)>1-¢&, if &, >0
t,(wi'x, +b) <1
" Any violating points become support vectors
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a,=0-t,(w'x,+b)>1
Non SV

a,=C-t,(wlx,+b) <1

SV on the wrong side

0<a,<C-t,(wx,+b)=1

SV on the margin
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How to choose C?

violating points become support vectors

How to define the hyper-parameter C — cross-validation
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