
The week ahead
▪ Quiz 9: mean is 84% and average completion time 5min 14sec

▪ Assignment 3 due 11:59pm (midnight) → 1 extra point (final grade) to everyone
▪ Extra office hour (5- 6 pm) offered by Rodrigo tonight

▪ Assignment 4 → releasing tonight

▪ Quiz 10, Friday, Oct 30th 6am until Oct 31st 11:59am (noon)
▪ SVM and the kernel method

▪ Touch-point 2: deliverables due Fri, Oct 30th, live-event Wed, Nov 2nd

▪ Single-slide presentation outlining progress highlights and current challenges 
▪ Three-minute pre-recorded presentation with your progress and current challenges

▪ Project midpoint report due Nov 6th 11:59pm (midnight)
▪ GitHub page with the results you have achieved utilizing unsupervised learning
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Coming up soon



These slides are based on slides from Andrew Zisserman and Mahdi Roozbahani

CS4641B Machine Learning

Lecture 19: SVM
Rodrigo Borela ‣ rborelav@gatech.edu



Outline
▪ Precursor: Linear classifier and perceptron
▪ Support vector machine
▪ Parameter learning

▪ Complementary reading: Bishop PRML – Chapter 7, Section 7.1.1 to 7.1.3
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Outline
▪ Precursor: Linear classifier and perceptron
▪ Support vector machine
▪ Parameter learning

CS4641B Machine Learning | Fall 2020 4



Binary Classification
▪ Given training data 𝐱𝑛, 𝑡𝑛 for 𝑛 = 1,… ,𝑁, with 𝐱𝑛 ∈ ℝ𝐷 and 𝑡𝑛 ∈ −1,+1 , learn a 

classifier 𝑓 𝐱 such that

𝑓 𝐱 = ቊ
≥ 0, 𝑡𝑛 = +1
< 0, 𝑡𝑛 = −1

For a correct classification we should have 𝑡𝑛𝑓 𝑥𝑛 > 0.
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Linear separability

linearly
separable

not
linearly
separable
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Linear classifier
▪ A linear classifier has the form:

𝑓 𝐱 = 𝑏 +𝐰𝑇𝐱

▪ In 2D the discriminant is a line
▪ 𝐰 is known as the weight vector, and 𝑏 the bias
▪ 𝐰 is the normal to the line, 

CS4641B Machine Learning | Fall 2020 7



Linear classifier (higher dimension)
▪ A linear classifier has the form:

𝑓 𝐱 = 𝑏 +𝐰𝑇𝐱

▪ In 3D the discriminant is a plane and in 𝐷-dimensions it is a hyperplane
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Misclassified

ex. 𝑡𝑛𝑓 𝐱𝑛 < 0

actual predicted

The perceptron classifier
▪ Considering 𝐗 is linearly separable and 𝐭 has two labels of {−1,1}

𝑓 𝐱 = 𝐰𝑇𝐱

▪ How can we separate datapoints with label 1 from datapoints with label −1 using a 
line?

▪ Perceptron Algorithm:
▪ Initialize 𝐰 = 0 (includes bias term, b )
▪ Go through each datapoint 𝐱𝑛, 𝑡𝑛
▪ If 𝐱𝑛 is misclassified, then 𝐰𝜏+1 ← 𝐰𝜏 + 𝜂𝑡𝑛𝐱𝑛
▪ Until all datapoints are correctly classified
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▪ Perceptron Algorithm:
▪ Initialize 𝐰 = 0 and 𝑏 = 0
▪ Go through each datapoint 𝐱𝑛, 𝑡𝑛
▪ If 𝐱𝑛 is misclassified, then 𝐰𝜏+1 ← 𝐰𝜏 + 𝜂𝑡𝑛𝐱𝑛
▪ Until all datapoints are correctly classified

The perceptron classifier

𝐰𝜏+1 ← 𝐰𝜏 + 𝜂𝑡𝑛𝐱𝑛𝐱𝑛

After updateBefore update
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Linear separation

Why is the bigger margin better?

What 𝐰 maximizes the margin?

▪ We can have different separating lines:

▪ Which ones is the best?

▪ In all cases, error is zero and they are linear, so they are all good for generalization.
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▪ Maximum margin solution: most stable under perturbations of the inputs

What is the best 𝐰?
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▪ If the data is linearly separable, then the algorithm will converge (test for linear 
separability)

▪ Convergence can be slow
▪ Separating line close to training data
▪ We would prefer a larger margin for generalization

The perceptron classifier
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Outline
▪ Precursor: Linear classifier and perceptron
▪ Support vector machine
▪ Parameter learning
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𝐰𝑇𝐱 + 𝑏 < 0

𝐰𝑇𝐱 + 𝑏 > 0

𝑥1

𝑥2

▪ Solution for the decision boundary : 𝑓 𝐱 = 𝐰𝑇𝐱 + 𝑏 = 0

Finding 𝐰 with a fat margin

CS4641B Machine Learning | Fall 2020 15



𝑥1

𝑥2

𝐱𝑖 𝐱𝑚

𝐱𝑛

𝐰

𝐱𝑗
𝐱𝑗 − 𝐱𝑖

w perpendicular to decision line

▪ Consider 𝐱𝑗 and 𝐱𝑖 on the plane (line here):

𝐰𝑇𝐱𝒋 + 𝑏 = 0 and 𝐰𝑇𝐱𝒊 + 𝑏 = 0

𝐰𝑇𝐱𝑗 = 𝐰𝑇𝐱𝑖 → 𝐰𝑇 𝐱𝑗 − 𝐱𝑖 = 0

▪ The vector 𝐰 is therefore perpendicular to 
the decision line.
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Computing the distance

𝑥1

𝑥2

𝐱𝑛

𝐱𝑛 𝐰
𝐱𝑗

𝐱𝑖
𝑚𝑎𝑟𝑔𝑖𝑛
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▪ Decision line: 𝐰𝑇𝐱 + 𝑏 =0.
▪ Let 𝐱𝑛 be the nearest data points to the decision line
▪ Does it matter if we scale w? It does not! Let’s scale w such that 

| 𝐰𝑇𝐱𝑛 + 𝑏 | =1
▪ We can compute distance between 𝐱𝑛 and decision line by 

projecting (𝐱𝑛 - 𝐱𝒊) on 𝐰. 𝐰 needs to be normalized to obtain the 
unit vector

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝐰𝑇

𝐰 2
| 𝐱𝑛 − 𝐱𝒊 |

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝟏

𝐰 2
|(𝐰𝑇𝐱𝑛 + 𝒃 −𝐰𝑇𝐱𝒊 − 𝒃)|

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝟏

𝐰 2

▪ Equal distance on both sides of decision line

𝑚𝑎𝑟𝑔𝑖𝑛 = 2 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
2

𝐰 2

A point on the decision lineConstraint

| 𝐰𝑇𝐱𝑛 + 𝑏 | =1 | 𝐰𝑇𝐱𝒊 + 𝑏 | =0



𝑥1

𝑥2

𝐱𝑛

𝐱𝑛
𝐰

𝐱𝑗

𝐱𝑖
𝑚𝑎𝑟𝑔𝑖𝑛
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Our goal is to maximize the margin

max
𝐰,𝑏

2

𝐰

𝑠. 𝑡. 𝐰𝑇𝐱𝑛 + 𝑏 = 1
for 𝑛 = nearest points to decision line

𝑠. 𝑡. 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 ≥ 1
for 𝑛 = 1,… ,𝑁

𝐰𝑇𝐱 + 𝑏 > 0, t = 1

𝐰𝑇𝐱 + 𝑏 < 0, t = -1



𝐰𝑇𝐱 + 𝑏 = 1

Class 2, t= 1

Class 1, t = -1

1

||𝐰||
1

||𝐰||

𝑡𝑛 𝐰𝑇𝐱 + 𝑏 > 1𝐰𝑇𝐱 + 𝑏 = 0

𝐰𝑇𝐱 + 𝑏 = −1

Our goal is to maximize the margin

max
𝐰,𝑏

2

𝐰

𝑠. 𝑡. 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 ≥ 1
for 𝑛 = 1,… , 𝑁

min
𝐰,𝑏

1

2
𝐰 2 =

1

2
𝐰𝑇𝐰

𝑠. 𝑡. 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 ≥ 1
for 𝑛 = 1,… ,𝑁

Equivalent
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Outline
▪ Precursor: Linear classifier and perceptron
▪ Support vector machine
▪ Parameter learning
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▪ Use the Lagrangian method with the Karush-Kuhn-Tucker (KKT) conditions:
▪ Rewrite the inequality constraint as an equality constraint: 𝑔 𝐱𝑛 = 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 − 1
▪ Write the Lagrangian with the equality constraint by introducing Lagrangian multipliers 𝑎𝑛:

ℒ 𝐰, 𝑏, 𝐚 =
1

2
𝐰 2 −෍

𝑛=1

𝑁

𝑎𝑛 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 − 1

▪ KKT conditions:
1. 𝑔 𝐱𝑛 ≥ 0 (Primal feasibility)
2. 𝑎𝑛 ≥ 0 (Dual feasibility) 
3. 𝑔 𝐱𝑛 𝑎𝑛 = 0 (Complementary slackness) ⇒ ቊ

𝑔 𝐱𝑛 > 0, 𝑎𝑛 = 0

𝑎𝑛 > 0, 𝑔 𝐱𝑛 = 0

Constrained optimization
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min
𝐰,𝑏

1

2
𝐰 2

𝑠. 𝑡. 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 ≥ 1

http://cs229.stanford.edu/notes/cs229-notes3.pdf


𝑔(𝐱) = 0

𝐰𝑇𝐱𝑛 + 𝑏 = 0

Class 2, t= 1

Class 1, t=-1

𝑔 𝐱 > 0

𝑔 𝐱𝑛 = 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 − 1
𝑔 𝐱𝑛 𝑎𝑛 = 0 (Complementary slackness)

𝑔 𝐱 > 0

𝑔(𝐱) = 0

Constrained optimization

⇒ ቊ
𝑔 𝐱𝑛 > 0, 𝑎𝑛 = 0

𝑎𝑛 > 0, 𝑔 𝐱𝑛 = 0
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Lagrange formulation

ℒ 𝐰, 𝑏, 𝐚 =
1

2
𝐰 2 −෍

𝑛=1

𝑁

𝑎𝑛 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 − 1

▪ Minimize with respect to 𝐰 and 𝑏 and maximize with respect to 𝐚:

∇𝐰ℒ 𝐰, 𝑏, 𝐚 = 𝐰 −෍

𝑛=1

𝑁

𝑎𝑛𝑡𝑛𝐱𝑛 = 0 → 𝐰 = ෍

𝑛=1

𝑁

𝑎𝑛𝑡𝑛𝐱𝑛

∇𝑏ℒ 𝐰, 𝑏, 𝐚 = −෍

𝑛=1

𝑁

𝑎𝑛𝑡𝑛 = 0

▪ We can replace these expressions back into the Lagrangian so that it is now only a 
function of 𝐚
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Dual representation
▪ We can now maximize the Lagrangian w.r.t 𝐚 (by substituting value of w):

ሚℒ 𝐚 =෍

𝑛=1

𝑁

𝑎𝑛 −
1

2
෍

𝑛=1

𝑁

෍

𝑚=1

𝑁

𝑡𝑛𝑡𝑚𝑎𝑛𝑎𝑚𝐱𝑛
𝑇𝐱𝑚

Subject to
𝑎𝑛 ≥ 0, for 𝑛 = 1,… ,𝑁

෍

𝑚=1

𝑁

𝑎𝑛𝑡𝑛 = 0
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The solution: quadratic programming

max
𝐚

෍

𝑛=1

𝑁

𝑎𝑛 −
1

2
෍

𝑛=1

𝑁

෍

𝑚=1

𝑁

𝑡𝑛𝑡𝑚𝑎𝑛𝑎𝑚𝐱𝑛
𝑇𝐱𝑚

▪ Quadratic programming packages usually use min, so we multiply the expression by −1:

min
𝐚

1

2
෍

𝑛=1

𝑁

෍

𝑚=1

𝑁

𝑡𝑛𝑡𝑚𝑎𝑛𝑎𝑚𝐱𝑛
𝑇𝐱𝑚 −෍

𝑛=1

𝑁

𝑎𝑛

min
𝐚

1

2
𝐚𝑇

𝑡1𝑡1𝐱1
𝑇𝐱1 𝑡1𝑡2𝐱1

𝑇𝐱1 … 𝑡1𝑡𝑁𝐱1
𝑇𝐱𝑁

𝑡2𝑡1𝐱2
𝑇𝐱1

…
𝑡𝑁𝑡𝑁𝐱1

𝑇𝐱𝑁

𝑡2𝑡2𝐱2
𝑇𝐱2

…
𝑡𝑁𝑡2𝐱𝑁

𝑇𝐱2

…
…
…

𝑡2𝑡𝑁𝐱2
𝑇𝐱𝑁

…
𝑡𝑁𝑡𝑁𝐱𝑁

𝑇𝐱𝑁

𝐚 − 𝐈𝐚 =
1

2
𝐚𝑇𝐐𝐚 − 𝐈𝐚

Subject to: 𝐚𝑇𝐭 = 0 and 𝑎𝑛 ≥ 0
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Quadratic coefficients

Linear term



𝐰𝑇𝐱 + 𝑏 = 1

𝐰𝑇𝐱 + 𝑏 = 0
𝐰𝑇𝐱 + 𝑏 = −1

Class 2

Class 1

𝛼2 = 0

𝛼4 = 0

𝛼5 = 0

𝛼3 = 0

𝛼6 > 0

𝛼1 > 0

𝑎8 > 0

𝑎11 = 0

𝑎7 = 0

𝑎10 = 0

𝑎9 = 0

2

𝐰𝑇𝐰

The solution: quadratic programming
▪ A quadratic programming package will then give us 𝑎 = 𝑎1 … 𝑎𝑁 𝑇

▪ From our KKT condition 𝑎𝑛𝑔 𝐱𝑛 = 0:
▪ 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 − 1 > 0 → 𝑎𝑛 = 0
▪ 𝑡𝑛 𝐰𝑇𝐱𝑛 + 𝑏 − 1 = 0 → 𝑎𝑛 > 0, then 𝐱𝑛 is a support vector
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𝐰 = ෍

𝑛=1

𝑁

𝑎𝑛𝑡𝑛𝐱𝑛

Since 𝑎𝑛 = 0 if 𝐱𝑛 is not a support 
vector, and 𝑎𝑛 > 0if it is a support 
vector:

𝐰 = ෍

𝑥𝑛 ∈ 𝑆𝑉

𝑎𝑛𝑡𝑛𝐱𝑛

and for 𝑏 pick any support vector 
and calculate: 𝑡𝑛 𝐰𝑇𝐱 + 𝑏 = 1

Training Testing

For a new test point 𝐱, compute:

𝑓 𝐱 = 𝐰𝑇𝐱 + 𝑏 = ෍

𝑛=1

𝑁

𝑎𝑛𝑡𝑛𝐱𝑛
𝑇𝐱 + 𝑏

Since 𝑎𝑛 = 0 if 𝐱𝑛 is not a support vector, 
and 𝑎𝑛 > 0 if it is a support vector:

𝑓 𝐱 = ෍

𝑥𝑛 ∈ 𝑆𝑉

𝑎𝑛𝑡𝑛𝐱𝑛
𝑇𝐱 + 𝑏

Classify 𝐱 as class 1 if the result is 
positive, and class 2 otherwise
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𝜃

Geometric interpretation
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𝑥1 𝜙1 𝐱 = 𝑥1 − 20 2

𝑥2

𝜙 𝐱 =
𝑥1 − 20 2

𝑥2 − 20 2

𝜙
1
𝐱

=
𝑥
2
−
2
0

2

𝐱 𝜙 𝐱

From 𝐱- to 𝜙 𝐱 -space 
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𝑥1

𝑥2

In this format for a dataset with 𝑁
datapoints and 𝐷 features, we need to 
learn 𝑁 variables. Is this a good idea?

Support vectors
▪ In 𝐱-space:

max
𝑎

෍

𝑛=1

𝑁

𝑎𝑛 −
1

2
෍

𝑛=1

𝑁

෍

𝑚=1

𝑁

𝑡𝑛𝑡𝑚𝑎𝑛𝑎𝑚𝐱𝑛
𝑇𝐱𝑚
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𝜙1 𝐱

𝜙2 𝐱

Support vectors
▪ In 𝝓(𝐱)-space:

max
𝑎

෍

𝑛=1

𝑁

𝑎𝑛 −
1

2
෍

𝑛=1

𝑁

෍

𝑚=1

𝑁

𝑡𝑛𝑡𝑚𝑎𝑛𝑎𝑚𝝓 𝐱𝑛
𝑇𝝓(𝐱𝑚)
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𝑥1

𝑥2

Support vectors
▪ In 𝐱-space, they are called pre-images of support vectors

CS4641B Machine Learning | Fall 2020 32


