
Happy Wednesday!
▪ Quiz 8, Friday, Oct 16th 6am until Oct 17th 11:59am (noon)

▪ Regularization and Naïve Bayes

▪ Assignment 3 Early bird special → 1 complete programming question by Mon, Oct 19th

11:59pm (midnight)
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These slides are adopted based on slides from Le Song, Eric Eaton, and Chao Zhang and Mahdi Roozbahani

CS4641B Machine Learning

Lecture 16: Logistic regression
Rodrigo Borela ‣ rborelav@gatech.edu



Outline
▪ Generative and Discriminative Classification
▪ The Logistic Regression Model
▪ Understanding the Objective Function
▪ Gradient Descent for Parameter Learning
▪ Multiclass Logistic Regression

▪ Complementary reading: Bishop PRML – Chapter 1, Section 1.5; Chapter 4, Section 4.1 
through 4.3.
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Classification

▪ Images are 28 × 28 pixels
▪ Represent input image as a vector 𝐱 ∈ ℝ784

▪ Learn a classifier 𝑓(𝐱) such that,
𝑓: 𝐱 → 0,1,2,3,4,5,6,7,8,9
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Classification
▪ Represent the data

▪ A label (target) is provided for each data point, e.g. 𝑡𝑛 ∈ {−1,+1}

▪ Train a classifier:

𝑥 =

𝑥1
𝑥2
⋮

𝑥𝑁−1
𝑥𝑁
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Decision making: intuition
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feature 1

feature 2 𝑝(𝑥)

𝑥



Decision making: dividing the feature space
▪ Distributions of sample from normal (positive class) and abnormal (negative class) 

tissues
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How to determine the decision boundary?
▪ Given class conditional distribution: 𝑝 𝐱|𝑡 = +1 , 𝑝 𝐱|𝑡 = −1 and class prior: 

𝑝 𝑡 = +1 and 𝑝 𝑡 = −1

𝑝 𝐱|𝑡 = +1 = 𝒩 𝐱| 𝝁+1, 𝚺+1

𝑝 𝐱|𝑡 = −1 = 𝒩 𝐱| 𝝁−1, 𝚺−1
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Bayes decision rule
▪ Let’s refresh our memories on two important rules in probability and statistics:

▪ Product rule: 𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝 𝑦
▪ Sum rule: 𝑝 𝑥 = σ𝑦 𝑝 𝑥, 𝑦

▪ Bayes theorem:

𝑝 𝑡|𝐱 =
𝑝 𝐱|𝑡 𝑝 𝑡

𝑝 𝐱
=

𝑝 𝐱, 𝑡

σ𝑡 𝑝 𝐱, 𝑡

▪ Prior: 𝑝(𝑡)
▪ Likelihood (class conditional distribution): 𝑝 𝐱|𝑡 = 𝒩 𝑥|𝜇𝑡, Σ𝑡

▪ Posterior: 𝑝 𝑡 𝑥 =
𝑝 𝑡 𝒩 𝑥|𝜇𝑡,Σ𝑡

σ𝑘 𝑝 𝑘 𝒩 𝑥|𝜇𝑘,Σ𝑘
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Bayes decision rule
▪ For a binary classification problem:

𝑝 𝑡 = +1|𝐱 =
𝑝 𝐱|𝑡 = +1 𝑝 𝑡 = +1

𝑝 𝐱|𝑡 = +1 𝑝 𝑡 = +1 + 𝑝 𝐱|𝑡 = −1 𝑝 𝑡 = −1
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Bayes decision rule
▪ Learning: prior 𝑝(𝑡), class conditional distribution 𝑝 𝐱|𝑡
▪ Inference: calculating the posterior probability of a test point

𝑝 𝑡 = 𝑖|𝐱 =
𝑝 𝐱|𝑡 = 𝑖 𝑝 𝑡 = 𝑖

𝑝 𝐱

▪ Bayes decision rule:
▪ If 𝑝 𝑡 = 𝑖|𝐱 > 𝑝 𝑡 = 𝑗|𝐱 , then 𝑡 = 𝑖, otherwise 𝑡 = 𝑗

▪ Alternatively, if the likelihood ratio:
𝑝 𝐱|𝑡 = 𝑖

𝑝 𝐱|𝑡 = 𝑗
>
𝑝 𝑡 = 𝑖

𝑝 𝑡 = 𝑗
Then 𝑡 = 𝑖, otherwise, 𝑡 = 𝑗
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Generative model: Naïve Bayes
▪ Use Bayes decision rule for classification

𝑝 𝑡|𝐱 =
𝑝 𝐱|𝑡 𝑝 𝑡

𝑝 𝐱
=
𝑝 𝐱, 𝑡

𝑝 𝐱

▪ Joint probability model:

𝑝 𝐱|𝑡 = 𝑝 𝑥1, 𝑥2, … , 𝑥𝐷|𝑡 = 𝑝 𝑥1|𝑥2, … , 𝑥𝐷, 𝑡 𝑝 𝑥2|𝑥3, … , 𝑥𝐷, 𝑡 … 𝑝 𝑥𝐷−1|𝑥𝐷, 𝑡 𝑝 𝑥𝐷|𝑡

▪ But assume 𝑝 𝐱|𝑡 is fully factorized:

𝑝 𝐱|𝑡 = 𝑝 𝑥1, 𝑥2, … , 𝑥𝐷|𝑡 = 𝑝 𝑥1|𝑡 𝑝 𝑥2|𝑡 …𝑝 𝑥𝐷|𝑡

𝑝 𝐱|𝑡 =ෑ

𝑑=1

𝐷

𝑝 𝑥𝑑|𝑡

▪ Or the variables corresponding to each dimensions of the data are independent given 
the label

CS4641B Machine Learning | Fall 2020 13



Gaussian Naïve Bayes
▪ Use Bayes decision rule for classification

𝑝 𝑡 = 1|𝐱 =
𝑝 𝐱|𝑡 𝑝 𝑡

𝑝 𝐱
=

𝜋1𝒩 𝐱|𝝁1, 𝚺1
σ𝑘 𝜋𝑘𝒩 𝐱|𝝁𝑘 , 𝚺𝑘

Because of the independence assumption

𝑝 𝑡 = 1|𝐱 =
𝜋1ς𝑑=1

𝐷 𝒩 𝑥𝑑|𝜇1𝑑, 𝜎1𝑑
2

σ𝑘 𝜋𝑘ς𝑑=1
𝐷 𝒩 𝑥𝑑|𝜇𝑘𝑑 , 𝜎𝑘𝑑

2

𝑝 𝑡 = 1|𝐱 =

𝜋1ς𝑑=1
𝐷 1

2𝜋𝜎1𝑑
exp −

1
2𝜎1𝑑

2 𝑥𝑑 − 𝜇1𝑑
2

σ𝑘 𝜋𝑘ς𝑑=1
𝐷 1

2𝜋𝜎𝑘𝑑
exp −

1
2𝜎𝑘𝑑

2 𝑥𝑑 − 𝜇𝑘𝑑
2
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Gaussian Naïve Bayes

𝑝 𝑡 = 1|𝐱 =

𝜋1ς𝑑=1
𝐷 1

2𝜋𝜎1𝑑
exp −

1
2𝜎1𝑑

2 𝑥𝑑 − 𝜇1𝑑
2

σ𝑘 𝜋𝑘ς𝑑=1
𝐷 1

2𝜋𝜎𝑘𝑑
exp −

1
2𝜎𝑘𝑑

2 𝑥𝑑 − 𝜇𝑘𝑑
2

get exp(ln 𝑢 ) of numerator and denominator

𝑝 𝑡 = 1|𝐱 =

exp −σ𝑑=1
𝐷 1

2𝜎1𝑑
2 𝑥𝑑 − 𝜇1𝑑

2 + ln 𝜎1𝑑 + 𝐶 + ln 𝜋1

σ𝑘 exp −σ𝑑=1
𝐷 1

2𝜎𝑘𝑑
2 𝑥𝑑 − 𝜇𝑘𝑑

2 + ln 𝜎𝑘𝑑 + 𝐶 + ln 𝜋𝑘

CS4641B Machine Learning | Fall 2020 15



Gaussian Naïve Bayes

𝑝 𝑡 = 1|𝐱 =
1

1 + exp −σ𝑑=1
𝐷 𝑥𝑑

1
𝜎𝑑

𝜇1𝑑 − 𝜇2𝑑 +
1
𝜎𝑑
2 𝜇1𝑑

2 − 𝜇2𝑑
2 + ln

𝜋2
𝜋1

෍

𝑑=1

𝐷

𝑤𝑑𝑥𝑑 𝑤0
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𝑝 𝑡 = 1|𝐱 =
1

1 + exp −σ𝑑=1
𝐷 𝑥𝑑

1
𝜎𝑑

𝜇1𝑑 − 𝜇2𝑑 +
1
𝜎𝑑
2 𝜇1𝑑

2 − 𝜇2𝑑
2 + ln

𝜋2
𝜋1

▪ Number of parameters: 2𝐷 + 1 (𝐷 mean, 𝐷 variance, and 1 for prior)

𝑝 𝑡 = 1|𝐱 =
1

1 + exp − 𝑤0 + σ𝑑=1
𝐷 𝑤𝑑𝑥𝑑

▪ Number of parameters = 𝐷 + 1 → 𝑤0, 𝑤1, 𝑤2, … , 𝑤𝐷

▪ Why not directly learning p 𝑡 = 1 𝐱 or 𝐰 parameters? 
Gaussian Naïve Bayes is a subset of logistic regression

Gaussian Naïve Bayes
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Outline
▪ Generative and Discriminative Classification
▪ The Logistic Regression Model
▪ Understanding the Objective Function
▪ Gradient Descent for Parameter Learning
▪ Multiclass Logistic Regression

CS4641B Machine Learning | Fall 2020 18



Classification approaches
▪ Generative models

▪ Model prior and likelihood explicitly
▪ “Generative” means able to generate synthetic data points after training
▪ Examples: Naive Bayes, Hidden Markov Models

▪ Discriminative models
▪ Directly estimate the posterior probabilities
▪ No need to model underlying prior and likelihood distributions
▪ Examples: Logistic regression, SVM, neural networks
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Discriminative Models
▪ Directly estimate decision boundary ℎ 𝑥 = − ln

𝑞𝑖 𝐱

𝑞𝑗 𝐱
or posterior distribution 𝑝(𝑡|𝑥)

▪ Logistic regression, neural networks
▪ Do not estimate 𝑝 𝑥|𝑡 and 𝑝(𝑡)

▪ Why discriminative classifier?
▪ Avoid difficult density estimation problem coming from generative models
▪ Empirically achieve better classification results

CS4641B Machine Learning | Fall 2020 20



𝑔(𝑠)

Many equations can give us this shape

Logistic function for posterior probability
▪ Let’s use the following function:

𝑠 = 𝐰𝑇𝝓(𝐱)

𝑔 𝑠 =
𝑒𝑠

1 + 𝑒𝑠
=

1

1 + 𝑒−𝑠

▪ This formula is called a sigmoid function

▪ It is easier to use this function for optimization
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Soft classification
Posterior probability

1

⋮

𝑥𝐷

𝑥1
ℎ(𝐱)

ℎ 𝐱 = 𝑔(𝐰𝑇𝝓 𝐱 ) → logistic regression

Σ

Sigmoid Function
▪ We enforce 𝜙0 𝐱 = 1, so for a simple mapping function of a vector 𝐱 with 𝐷

dimensions, we have the following: obtain:

𝑠 = 𝐰𝑇𝝓 𝐱 = ෍

𝑚=0

𝑀−1

𝑤𝑚𝜙𝑚 𝐱 = 𝑤0 +𝑤1𝑥1 +⋯+𝑤𝐷𝑥𝐷

𝑔 𝑠 =
𝑒𝑠

1 + 𝑒𝑠
=

1

1 + 𝑒−𝑠
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Hard classification

1

⋮
𝑥𝑑

𝑥1 ℎ(𝐱)

ℎ 𝐱 = 𝑠𝑖𝑔𝑛 𝐰𝑇𝝓 𝐱 → linear classification (perceptron)

Σ

1

⋮
𝑥𝑑

𝑥1 ℎ(𝐱)

ℎ 𝐱 → linear regression

Σ

Soft classification
Posterior probability

1

⋮
𝑥𝑑

𝑥1 ℎ(𝐱)

ℎ 𝐱 = 𝑔(𝐰𝑇𝝓 𝐱 ) → logistic regression

Σ

Three linear models
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Outline
▪ Generative and Discriminative Classification
▪ The Logistic Regression Model
▪ Understanding the Objective Function
▪ Gradient Descent for Parameter Learning
▪ Multiclass Logistic Regression
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Logistic function for posterior probability
▪ 𝑔(𝑠) is interpreted as probability

▪ Example: Prediction of heart attacks
▪ Input 𝐱: cholesterol level, age, weight, finger size, etc.

▪ 𝑔 𝑠 : probability of heart attack within a certain time

▪ Let’s call this risk score 𝑠 = 𝐰𝑇𝝓 𝐱

▪ We can’t have a hard prediction here

▪ ℎ 𝑥 = 𝑝(𝑡|𝑥) = ቊ
𝑔(𝑠), 𝑡 = 1
1 − 𝑔(𝑠), 𝑡 = 0

▪ Using posterior probability directly
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Logistic regression model

▪ 𝑝 𝑡 𝑥 =

1

1+exp −𝐰𝑇𝝓 𝐱
𝑡 = 1

1 −
1

1+exp −𝐰𝑇𝝓 𝐱
=

exp −𝐰𝑇𝝓 𝐱

1+exp −𝐰𝑇𝝓 𝐱
𝑡 = 0

▪ We need to find 𝐰 parameters, let’s set up log-likelihood for 𝑁 datapoints

𝑙𝑙 𝐰 = logෑ

𝑛=1

𝑁

𝑝(𝑡𝑛, |𝐱𝑛, 𝐰)

𝑙𝑙 𝐰 = ෍

𝑛=1

𝑁

(𝐰𝑇𝝓 𝐱𝑛 ) 𝑡𝑛 − 1 − log 1 + exp −𝐰𝑇𝝓 𝐱𝑛

▪ This form is concave, negative of this form is convex
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The gradient of 𝑙𝑙(𝐰)

𝑙𝑙 𝐰 = logෑ

𝑛=1

𝑁

𝑝(𝑡𝑛, |𝐱𝑛, 𝐰)

𝑙𝑙 𝐰 = ෍

𝑛=1

𝑁

(𝐰𝑇𝝓 𝐱𝑛 ) 𝑡𝑛 − 1 − log 1 + exp −𝐰𝑇𝝓 𝐱𝑛

▪ Gradient

𝜕𝑙𝑙 𝐰

𝜕𝐰
= ෍

𝑛=1

𝑁

𝝓 𝐱𝑛 𝑡𝑛 − 1 +
exp −𝐰𝑇𝝓 𝐱𝑛

1 + exp −𝐰𝑇𝝓 𝐱𝑛
𝝓 𝐱𝑛

▪ Setting it to 0 does not lead to closed form solution

CS4641B Machine Learning | Fall 2020 27



The objective function
▪ Find 𝐰, such that the conditional likelihood of the labels is maximized

max
𝐰

𝑙𝑙 𝐰 = logෑ

𝑛=1

𝑁

𝑝(𝑡𝑛, |𝐱𝑛, 𝐰)

▪ Good news: 𝑙𝑙 𝐰 is a concave function of 𝐰, and there is a single global optimum

▪ Bad news: no closed form solution (resort to numerical method)
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Outline
▪ Generative and Discriminative Classification
▪ The Logistic Regression Model
▪ Understanding the Objective Function
▪ Gradient Descent for Parameter Learning
▪ Multiclass Logistic Regression
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Gradient descent: intuition
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Gradient descent
▪ One way to solve an unconstrained optimization 

problem is gradient descent

▪ Given an initial guess, we are iteratively refining the 
guess by taking the direction of the negative gradient

▪ Think about going down a hill by taking the steepest 
direction at each step

▪ Update rule
𝐳 𝜏+1 = 𝐳𝜏 − 𝛾𝜏∇𝑓 𝐳𝜏

𝛾𝜏 is the learning rate
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Gradient ascent (concave) / descent (convex)
▪ Initialize parameter 𝐰𝜏=0

▪ Do

𝐰 𝜏+1 = 𝐰𝜏 − 𝜂𝜏
𝜕𝑙𝑙 𝐰

𝜕𝐰
= 𝐰𝜏 − 𝜂𝜏 ෍

𝑛=1

𝑁

𝝓 𝐱𝑛 𝑡𝑛 − 1 +
exp −𝐰𝑇𝝓 𝐱𝑛

1 + exp −𝐰𝑇𝝓 𝐱𝑛
𝝓 𝐱𝑛

▪ While the 𝐰 𝜏+1 −𝐰𝜏 > 𝜖
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Logistic regression
ℎ𝐰 𝑥 = 𝑔 𝐰𝑇𝝓 𝐱

𝑔 𝑠 =
1

1 + 𝑒−𝑠

▪ Assume a threshold and…
▪ Predict 𝑡 = 1 if ℎ𝑤 𝐱 ≥ 0.5
▪ Predict 𝑡 = 0 if ℎ𝑤 𝐱 ≥ 0.5

𝐰𝑇𝝓 𝐱 should be 
large negative values 
for negative instances 

𝐰𝑇𝝓 𝐱 should be 
large positive values 
for positive instances 

𝑔(𝑠)
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Outline
▪ Generative and Discriminative Classification
▪ The Logistic Regression Model
▪ Understanding the Objective Function
▪ Gradient Descent for Parameter Learning
▪ Multiclass Logistic Regression
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▪ Disease diagnosis: healthy / cold / flu / pneumonia
▪ Object classification: desk / chair/ monitor / bookcase

Multiclass logistic regression

Binary classification Multi-class classification
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ℎ𝐰
1 𝐱 ℎ𝐰

2 𝐱 ℎ𝐰
3 𝐱

One-vs-all (one-vs-rest)

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

▪ Train a logistic regression ℎ𝐰
(𝑘)

𝐱 for each class 𝑘
▪ To predict the label of a new input 𝑥, pick class 𝑖 that 

maximizes:

max
𝑘

ℎ𝐰
(𝑘)

𝐱
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