The week ahead

- Quiz 7: mean is 78% and average completion time 5min 48sec (please, check practice) *questions!*)
- **Focus videos:** PCA and linear regression available on the class website Tue, Oct 13th
- Quiz 8, Friday, Oct 10th 6am until Oct 10th 11:59am (noon)
 - Regularization and Naïve Bayes

Coming up soon

Assignment 3 Early bird special \rightarrow 1 complete programming question by Mon, Oct 19th 11:59pm (midnight)

CS4641B Machine Learning Lecture 15: Regularized linear regression

Rodrigo Borela ► rborelav@gatech.edu

These slides are adapted based on slides from Andrew Zisserman, Jonathan Taylor, Chao Zhang and Yaser Abu-Mostafa and Mahdi Roozbahani

Outline

- **Overfitting and regularized learning**
- Ridge regression
- Lasso regression
- Determining regularization strength
- Complementary reading: Bishop PRML Chapter 1, Section 1.1; Chapter 3, Section 3.1 through 3.2.

Outline

- Overfitting and regularized learning
- Ridge regression
- Lasso regression
- Determining regularization strength

Regression: recap

- Suppose we are given a training set of N observations and D features: $\{(\mathbf{x}_1, t_1), (\mathbf{x}_2, t_2), ..., (\mathbf{x}_N, t_N)\}, \mathbf{x}_n \in \mathbb{R}^D$ and $t_n \in \mathbb{R}$
- Assuming $t = y(\mathbf{x}, \mathbf{w}) + \epsilon$
- Regression problem is to estimate $y(\mathbf{x}, \mathbf{w})$ from this data

CS4641B Machine Learning | Fall 2020

Regression: recap

- If y is a linear function of **x**, we have $y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \dots + w_D x_D$
- Or using a basis function ϕ_m , we have: $y(\mathbf{x}, \mathbf{w}) = \sum_{m=0}^{M-1} w_m \phi_m(\mathbf{x}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x})$, where $\mathbf{w} \in \mathbb{R}^M$
- Example, polynomial basis function of degree M 1: $y(x, \mathbf{w}) = w_0 x^0 + w_1 x^1 + \dots + w_{M-1} x^{M-1}$

Which one is better?

Can we increase the maximal polynomial degree such that the curve passes through all training points?

CS4641B Machine Learning | Fall 2020

- The training error is very low, but the error on test set is large.
- The model captures not only patterns but also noisy nuisances in the training data.

The overfitting problem

- In regression, overfitting is often associated with large weights (severe oscillation)
- How can we address overfitting?

The overfitting problem

But what if I don't have more data?

Regularization

(smart way to cure overfitting disease)

Fit a linear line on sinusoidal with just two data points

CS4641B Machine Learning | Fall 2020

Who is the winner?

without regularization $\bar{g}(x)$ $\bar{g}(x)$ Ú. \overline{a} $\sin(\pi x)$ $\sin(\pi x)$ x

bias = 0.21; var = 1.69 bias = 0.

bias = 0.23; var = 0.33

Converting expressions to linear algebra notation

- Model: $y(\mathbf{x}, \mathbf{w}) = \sum_{m=0}^{M-1} w_m \phi_m(\mathbf{x}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x})$, where $\mathbf{w} \in \mathbb{R}^M$
- Design matrix for a polynomial of degree M 1:

$$\boldsymbol{\Phi} = \begin{pmatrix} \phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\ \phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N) \end{pmatrix}_{N \times M} = \boldsymbol{\Phi} \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 \\ \mathbf{x}_1 & \mathbf{x}_2 \\ \mathbf{x}_1 & \mathbf{x}_2 \\ \mathbf{x}_2 & \mathbf{x}_1 \\ \mathbf{x}_2 & \mathbf{x}_2 \end{pmatrix}_{N \times M}$$

Target value and weight vectors:

$$\mathbf{t} = \begin{bmatrix} t_1 \\ \vdots \\ t_N \end{bmatrix}_{N \times 1} \text{ and } \mathbf{t} = \begin{bmatrix} w_0 \\ \vdots \\ w_{M-1} \end{bmatrix}_{M \times 2}$$

Sum-of-squares error

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 = \frac{1}{2} \left(\mathbf{t} - \boldsymbol{\Phi} \mathbf{w} \right)^2$$

CS4641B Machine Learning | Fall 2020

1

 $)^{T}(\mathbf{t} - \mathbf{\Phi}\mathbf{w})$

Regularized learning

Minimize:

$$\tilde{E}(\mathbf{w}) = E_D(\mathbf{w}) + \lambda E_w(\mathbf{w})$$

Data-dependent error

$$E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 = \frac{1}{2} \left(\mathbf{t} - \boldsymbol{\Phi} \mathbf{w} \right)^2$$

Regularization term

Regularized learning

• Ridge regression (q = 2):

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2$$

• Lasso regression (q = 1):

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{1}{2} \sum_{n=1}$$

CS4641B Machine Learning | Fall 2020

 $+\frac{\lambda}{2}\mathbf{w}^T\mathbf{w}$

$$\lambda \sum_{j=1}^{M} |w_j|$$

Outline

- Overfitting and regularized learning
- Ridge regression
- Lasso regression
- Determining regularization strength

Regularized learning

Minimize

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 +$$
$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{t} - \mathbf{\Phi} \mathbf{w})^T (\mathbf{t} - \mathbf{\Phi} \mathbf{w}) +$$

$\frac{\lambda}{2} \|\mathbf{w}\|_2^2$

+ $\frac{\lambda}{2}\mathbf{w}^T\mathbf{w}$

Example: regularized learning

Given a dataset { $(x_1, t_1), (x_2, t_2), \dots, (x_N, t_N)$ } (one single feature)

- We fit a polynomial of degree 1 (line) on the data: $y(x, \mathbf{w}) = \mathbf{w}^T \boldsymbol{\phi}(x_n) = w_0 + w_1 x_n$
- We can then write the data-dependent error (in this case the mean of the square error)

$$E_D(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 = \frac{1}{N} \sum_{n=1}^{N} (t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n))^2$$

and plot it with respect to the two parameters w_0 and w_1 :

 $(w_0 + w_1 x_n)^2$

Example: regularized learning

- Let us plot the gradient of $\mathbf{w}^T \mathbf{w} = \begin{bmatrix} w_0 & w_1 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = w_0^2 + w_1^2$
- If you imagine standing at a point $[w_0, w_1]^T$, $\nabla(\mathbf{w}^T \mathbf{w})$ tells you which direction you should travel to increase the value of $\mathbf{w}^T \mathbf{w}$ most rapidly:

$$\nabla(\mathbf{w}^T \mathbf{w}) = \begin{bmatrix} \frac{\partial}{\partial(w_0)} \mathbf{w}^T \mathbf{w} \\ \frac{\partial}{\partial(w_1)} \mathbf{w}^T \mathbf{w} \end{bmatrix} = \begin{bmatrix} 2w_0 \\ 2w_1 \end{bmatrix} \approx \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

 $\nabla(\mathbf{w}^T \mathbf{w})$ is a vector field

Any line passing through the center of the circle \rightarrow most rapid increase

Example: regularized learning

Plotting the regularization portion: $E_{\mathbf{w}}(\mathbf{w}) = \mathbf{w}^T \mathbf{w} = \begin{bmatrix} w_0 & w_1 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix} = w_0^2 + w_1^2$ with respect to the two parameters w_0 and w_1 :

3D view

Top view

Regularized learning: constrained optimization

- We can treat this as an optimization problem, where we are trying to minimize: $E(\mathbf{w}) = \frac{1}{2} (\mathbf{t} - \mathbf{\Phi}\mathbf{w})^T (\mathbf{t} - \mathbf{\Phi}\mathbf{w})$ W_1 subject to $\mathbf{w}^T \mathbf{w} \leq \mathbf{C}$
- Find a solution in $\mathbf{w}^T \mathbf{w}$ that minimizes $E(\mathbf{w})$ which is constant on the surface of the ellipsoid

 \mathbf{W}_{unreg} : minimum E(w) possible

Regularized learning: constrained optimization

- Considering the $E(\mathbf{w})$ and C what is a \mathbf{w} candidate?
- The gradient \(\nabla E(\mathbf{w})\) in objective function which minimizes error (orthogonal to ellipse). Changes happen in orthogonal direction
- What is the orthogonal direction on the other surface?
 It is a w along a direction passing through center of the circle
- Applying the w^Tw, where is the best solution located?
 On the boundary of the circle, as it is the closest one to the minimum absolute

Regularized learning: constrained optimization

- At the solution point we have: $\nabla E(\mathbf{w}) \propto -\nabla(\mathbf{w}^T \mathbf{w})$
- To obtain equality we multiply the gradient by a constant $\nabla E(\mathbf{w}) = -\lambda \mathbf{w}$
- We then recover our previous expression for the minimum $\nabla E(\mathbf{w}) + \lambda \mathbf{w} = 0$
- And we can rewrite the optimization problem as calculating the minimum of:

$$\tilde{E} = \frac{1}{2} (\mathbf{t} - \mathbf{\Phi} \mathbf{w})^T (\mathbf{t} - \mathbf{\Phi} \mathbf{w}) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

$$C \uparrow \lambda \downarrow$$

Ridge regression

Minimize

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} (\mathbf{t} - \mathbf{\Phi}\mathbf{w})^T (\mathbf{t} - \mathbf{\Phi}\mathbf{w}) + \frac{1}{2} (\mathbf{t} - \mathbf{\Phi}\mathbf{w})^T (\mathbf{t} - \mathbf{\Phi}\mathbf{w})^T (\mathbf{t} - \mathbf{\Phi}\mathbf{w}) + \frac{1}{2} (\mathbf{t} - \mathbf{\Phi}\mathbf{w})^T (\mathbf{$$

Compute the derivative with respect to w and set it to zero

$$\frac{\partial \tilde{E}(\mathbf{w})}{\partial \mathbf{w}} = -\mathbf{\Phi}^T (\mathbf{t} - \mathbf{\Phi} \mathbf{w}) + \lambda \mathbf{w}$$
$$-\mathbf{\Phi}^T \mathbf{t} + \mathbf{\Phi}^T \mathbf{\Phi} \mathbf{w} + \lambda \mathbf{I} \mathbf{w} = \mathbf{0}$$
$$\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{\Phi}^T \mathbf{t}$$

$\frac{\lambda}{2}\mathbf{w}^T\mathbf{w}$

= 0

Ridge regression

Closed form solution

$$\mathbf{w} = \left(\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I}\right)^{-1} \mathbf{\Phi}^T \mathbf{t}$$

This shows that there is a unique solution.

• If
$$\lambda = 0$$
 (no regularization), then:
 $\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t} = \mathbf{\Phi}^+ \mathbf{t}$

where Φ^+ is the pseudo-inverse of Φ

Adding the term λI improves the conditioning of the inverse, since if Φ is not full rank, then $(\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I})$ will be (provided λ is sufficiently large)

• As
$$\lambda \to \infty$$
, $\mathbf{w} \to \frac{1}{\lambda} \mathbf{\Phi}^T \mathbf{t} \to \mathbf{0}$

Ridge regression: example

- The red curve is the true function, which is not polynomial.
- The data points are samples from the curve with added noise
- There is a choice in both the degree, M, of the basis functions used and the strength of the regularization

al. oise tions used and the strength

Ridge regression: example

M - 1 = 3 (polynomial of degree 3) M - 1 =

M - 1 = 5 (polynomial of degree 5)

CS4641B Machine Learning | Fall 2020

Outline

- Overfitting and regularized learning
- Ridge regression
- Lasso regression
- Determining regularization strength

Lasso regularization

- LASSO = Least absolute shrinkage and selection
- Minimize with respect to $\mathbf{w} \in \mathbb{R}^M$

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \lambda$$

- This is a quadratic optimization problem
- There is a unique solution

Lasso regression

• Minimize:

$$E(\mathbf{w}) = \frac{1}{2} (\mathbf{t} - \mathbf{\Phi}\mathbf{w})^T (\mathbf{t} - \mathbf{\Phi}\mathbf$$

- One advantage of Lasso regression is the potential to obtain sparse solutions
- Application to feature selection

 W_1

Sharp edges

Regularized learning

• Ridge regression
$$(q = 2)$$
:

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}$$

• Lasso regression
$$(q = 1)$$
:

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \lambda \sum_{j=1}^{M} |w_j|$$

Outline

- Overfitting and regularized learning
- Ridge regression
- Lasso regression
- Determining regularization strength

Leave-one-out cross-validation

- For every n = 1, ..., N:
 - Train the model on every datapoint except the n-th
 - Compute the test error on the held-out point
- Average the test errors

123

n

n
n
n

n

K-fold cross-validation

- Split the data into K subsets or folds
- For every k = 1, ..., K:
 - Train the model on every fold except the k-th fold
 - Compute the test error
- Average the test errors

CS4641B Machine Learning | Fall 2020

Choosing λ using validation dataset

Pick up the λ with the lowest mean value of E_{RMS} obtained from cross-validation