The week ahead

- **Quiz 7:** mean is 78% and average completion time 5min 48sec *(please, check practice questions!)*
- **Focus videos:** PCA and linear regression available on the class website Tue, Oct 13th
- Quiz 8, Friday, Oct 10th 6am until Oct 10th 11:59am (noon)
	- **Regularization and Naïve Bayes**

■ Assignment 3 Early bird special \rightarrow 1 complete programming question by Mon, Oct 19th 11:59pm (midnight)

Coming up soon

These slides are adapted based on slides from Andrew Zisserman, Jonathan Taylor, Chao Zhang and Yaser Abu-Mostafa and Mahdi Roozbahani

CS4641B Machine Learning Lecture 15: Regularized linear regression

Rodrigo Borela • rborelav@gatech.edu

Outline

- Overfitting and regularized learning
- Ridge regression
- **E** Lasso regression
- Determining regularization strength
- *Complementary reading: Bishop PRML Chapter 1, Section 1.1; Chapter 3, Section 3.1 through 3.2.*

Outline

- Overfitting and regularized learning
- Ridge regression
- **E** Lasso regression
- **Determining regularization strength**

Regression: recap

- **E** Suppose we are given a training set of N observations and D features: $\{(\mathbf{x}_1,t_1),(\mathbf{x}_2,t_2),...,(\mathbf{x}_N,t_N)\},\mathbf{x}_n \in \mathbb{R}^D$ and $t_n \in \mathbb{R}^N$
- **•** Assuming $t = y(\mathbf{x}, \mathbf{w}) + \epsilon$
- **•** Regression problem is to estimate $y(x, w)$ from this data

CS4641B Machine Learning | Fall 2020 5

Regression: recap

- **•** If y is a linear function of **x**, we have $y(\mathbf{x}, \mathbf{w}) = w_0 + w_1 x_1 + \cdots + w_D x_D$
- **•** Or using a basis function ϕ_m , we have: $y(\mathbf{x}, \mathbf{w}) = \sum_{m=0}^{M-1} w_m \phi_m(\mathbf{x}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x})$, where $\mathbf{w} \in \mathbb{R}^M$
- Example, polynomial basis function of degree $M 1$: $y(x, w) = w_0 x^0 + w_1 x^1 + \dots + w_{M-1} x^{M-1}$

Which one is better?

■ Can we increase the maximal polynomial degree such that the curve passes through all training points?

- The training error is very low, but the error on test set is large.
- The model captures not only patterns but also noisy nuisances in the training data.

The overfitting problem

- In regression, overfitting is often associated with large weights (severe oscillation)
- How can we address overfitting?

CS4641B Machine Learning | Fall 2020 9

The overfitting problem

■ But what if I don't have more data?

Fit a linear line on sinusoidal with just two data points

CS4641B Machine Learning | Fall 2020 11

Regularization

(smart way to cure overfitting disease)

Who is the winner?

without regularization $\bar{g}(x)$ $\bar{g}(x)$ \tilde{p} \tilde{q} $\sin(\pi x)$ $\sin(\pi x)$ \boldsymbol{x}

 $bias = 0.21; var = 1.69$ $bias = 0.23; var = 0.33$

$$
\Phi = \begin{pmatrix}\n\phi_0(\mathbf{x}_1) & \phi_1(\mathbf{x}_1) & \cdots & \phi_{M-1}(\mathbf{x}_1) \\
\phi_0(\mathbf{x}_2) & \phi_1(\mathbf{x}_2) & \cdots & \phi_{M-1}(\mathbf{x}_2) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_0(\mathbf{x}_N) & \phi_1(\mathbf{x}_N) & \cdots & \phi_{M-1}(\mathbf{x}_N)\n\end{pmatrix}_{N \times M} = \Phi
$$

■ Target value and weight vectors:

 $\mathbf{t} - \mathbf{\Phi} \mathbf{w})^T (\mathbf{t} - \mathbf{\Phi} \mathbf{w})$

$$
\mathbf{t} = \begin{bmatrix} t_1 \\ \vdots \\ t_N \end{bmatrix}_{N \times 1} \text{ and } \mathbf{t} = \begin{bmatrix} w_0 \\ \vdots \\ w_{M-1} \end{bmatrix}_{M \times 1}
$$

■ Sum-of-squares error

$$
E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 = \frac{1}{2} (\mathbf{t} - \boldsymbol{\Phi} \mathbf{w})
$$

CS4641B Machine Learning | Fall 2020 13

Converting expressions to linear algebra notation

- Model: $y(\mathbf{x}, \mathbf{w}) = \sum_{m=0}^{M-1} w_m \phi_m(\mathbf{x}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x})$, where $\mathbf{w} \in \mathbb{R}^M$
- Design matrix for a polynomial of degree $M 1$:

Regularized learning

■ Minimize:

$$
\tilde{E}(\mathbf{w}) = E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})
$$

■ Data-dependent error

$$
E_D(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^N \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 = \frac{1}{2} (\mathbf{t} - \boldsymbol{\Phi} \mathbf{w})
$$

■ Regularization term

Regularized learning

• Ridge regression $(q = 2)$:

$$
\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2
$$

■ Lasso regression $(q = 1)$:

$$
\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 +
$$

CS4641B Machine Learning | Fall 2020 15

 $+$ λ 2 $\mathbf{w}^T\mathbf{w}$

 $+ \lambda$ $j=1$ \overline{M} W_j

Outline

- Overfitting and regularized learning
- **EXECUTE: Ridge regression**
- **E** Lasso regression
- **Determining regularization strength**

Regularized learning

■ Minimize

$$
\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 +
$$

$$
\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{t} - \boldsymbol{\Phi} \mathbf{w})^T (\mathbf{t} - \boldsymbol{\Phi} \mathbf{w}) +
$$

CS4641B Machine Learning | Fall 2020 17

λ 2 \mathbf{w} || $_2^2$

 λ 2 $\mathbf{w}^T\mathbf{w}$

Example: regularized learning

■ Given a dataset $\{(x_1, t_1), (x_2, t_2), ..., (x_N, t_N)\}$ (one single feature)

- **•** We fit a polynomial of degree 1 (line) on the data: $y(x, w) = w^T \phi(x_n) = w_0 + w_1 x_n$
- We can then write the data-dependent error (in this case the mean of the square error)

$$
E_D(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n))^{2} = \frac{1}{N} \sum_{n=1}^{N} (t_n -
$$

and plot it with respect to the two parameters w_0 and w_1 :

 $t_n - w_0 + w_1 x_n)^2$

Example: regularized learning

- **•** Let us plot the gradient of $\mathbf{w}^T \mathbf{w} = \begin{bmatrix} w_0 & w_1 \end{bmatrix}$ $W₀$ W_1 $= w_0^2 + w_1^2$
- **T** If you imagine standing at a point $[w_0, w_1]^T$, $\nabla(\mathbf{w}^T\mathbf{w})$ tells you which direction you should travel to increase the value of w^Tw most rapidly:

$$
\nabla(\mathbf{w}^T \mathbf{w}) = \begin{bmatrix} \frac{\partial}{\partial (w_0)} \mathbf{w}^T \mathbf{w} \\ \frac{\partial}{\partial (w_1)} \mathbf{w}^T \mathbf{w} \end{bmatrix} = \begin{bmatrix} 2w_0 \\ 2w_1 \end{bmatrix} \approx \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}
$$

 $\nabla(\mathbf{w}^T\mathbf{w})$ is a vector field

Any line passing through the center of the circle \rightarrow most rapid increase

Example: regularized learning

• Plotting the regularization portion: $E_{\mathbf{w}}(\mathbf{w}) = \mathbf{w}^T \mathbf{w} = \begin{bmatrix} w_0 & w_1 \end{bmatrix}$ with respect to the two parameters w_0 and w_1 :

W_0 W_1 $= w_0^2 + w_1^2$

Regularized learning: constrained optimization

- W_1 ■ We can treat this as an optimization problem, where we are trying to minimize: $E(\mathbf{w})=$ 1 2 $\mathbf{t} - \mathbf{\Phi} \mathbf{w})^T (\mathbf{t} - \mathbf{\Phi} \mathbf{w})$ subject to $\mathbf{w}^T \mathbf{w} \leq C$
- Find a solution in $\mathbf{w}^T\mathbf{w}$ that minimizes $E(\mathbf{w})$ which is constant on the surface of the ellipsoid

 $$

Regularized learning: constrained optimization

- **•** Considering the $E(\mathbf{w})$ and C what is a **w** candidate?
- **The gradient** $\nabla E(\mathbf{w})$ **in objective function which** minimizes error (orthogonal to ellipse). Changes happen in orthogonal direction
- What is the orthogonal direction on the other surface? It is a w along a direction passing through center of the circle
- Applying the $\mathbf{w}^T \mathbf{w}$, where is the best solution located? On the boundary of the circle, as it is the closest one to the minimum absolute

$$
C \uparrow \lambda \downarrow
$$

Regularized learning: constrained optimization

- At the solution point we have: $\nabla E(\mathbf{w}) \propto -\nabla(\mathbf{w}^T \mathbf{w})$
- To obtain equality we multiply the gradient by a constant $\nabla E(\mathbf{w}) = -\lambda \mathbf{w}$
- We then recover our previous expression for the minimum $\nabla E(\mathbf{w}) + \lambda \mathbf{w} = 0$
- And we can rewrite the optimization problem as calculating the minimum of:

$$
\tilde{E} = \frac{1}{2} (\mathbf{t} - \boldsymbol{\Phi}\mathbf{w})^T (\mathbf{t} - \boldsymbol{\Phi}\mathbf{w}) + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}
$$

Ridge regression

■ Minimize

$$
\tilde{E}(\mathbf{w}) = \frac{1}{2} (\mathbf{t} - \mathbf{\Phi} \mathbf{w})^T (\mathbf{t} - \mathbf{\Phi} \mathbf{w}) +
$$

■ Compute the derivative with respect to w and set it to zero

$$
\frac{\partial \tilde{E}(\mathbf{w})}{\partial \mathbf{w}} = -\mathbf{\Phi}^T (\mathbf{t} - \mathbf{\Phi} \mathbf{w}) + \lambda \mathbf{w}
$$

$$
-\mathbf{\Phi}^T \mathbf{t} + \mathbf{\Phi}^T \mathbf{\Phi} \mathbf{w} + \lambda \mathbf{I} \mathbf{w} = \mathbf{0}
$$

$$
\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I})^{-1} \mathbf{\Phi}^T \mathbf{t}
$$

λ 2 $\mathbf{w}^T\mathbf{w}$

$= 0$

Ridge regression

■ Closed form solution

$$
\mathbf{w} = \left(\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I}\right)^{-1} \mathbf{\Phi}^T \mathbf{t}
$$

This shows that there is a unique solution.

If
$$
\lambda = 0
$$
 (no regularization), then:
\n
$$
\mathbf{w} = (\mathbf{\Phi}^T \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{t} = \mathbf{\Phi}^+ \mathbf{t}
$$

where Φ^+ is the pseudo-inverse of Φ

Adding the term λ I improves the conditioning of the inverse, since if Φ is not full rank, then $(\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I})$ will be (provided λ is sufficiently large)

$$
\blacksquare \quad \text{As } \lambda \to \infty, \, \mathbf{w} \to \frac{1}{\lambda} \, \mathbf{\Phi}^T \mathbf{t} \to \mathbf{0}
$$

Ridge regression: example

- The red curve is the true function, which is not polynomial.
- The data points are samples from the curve with added noise
- There is a choice in both the degree, M, of the basis functions used and the strength of the regularization

Ridge regression: example

 $M-1 = 3$ (polynomial of degree 3) $M-1 = 5$ (polynomial of degree 5)

CS4641B Machine Learning | Fall 2020 28

Outline

- Overfitting and regularized learning
- Ridge regression
- **E** Lasso regression
- **Determining regularization strength**

Lasso regularization

- LASSO = Least absolute shrinkage and selection
- **■** Minimize with respect to $w \in \mathbb{R}^M$

$$
\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \lambda \sum_{m=0}^{M-1}
$$

- **This is a quadratic optimization problem**
- **There is a unique solution**

$$
Sharp \ edges
$$

− (

 W_1

 \boldsymbol{C}

\n- Minimize:
\n- $$
E(\mathbf{w}) = \frac{1}{2} (\mathbf{t} - \Phi \mathbf{w})^T (\mathbf{t} - \Phi \mathbf{w})
$$
\n
$$
\text{subject to } \sum_{m=0}^{M-1} |w_m| \le C
$$

- One advantage of Lasso regression is the potential to obtain sparse solutions
- Application to feature selection

Lasso regression

Regularized learning

■ Ridge regression
$$
(q = 2)
$$
:

$$
\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \frac{\lambda}{2} \mathbf{w}^T \mathbf{w}
$$

$$
\blacksquare
$$
 Lasso regression ($q = 1$):

$$
\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(t_n - \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}_n) \right)^2 + \lambda \sum_{j=1}^{M} |w_j|
$$

CS4641B Machine Learning | Fall 2020 32

Outline

- Overfitting and regularized learning
- Ridge regression
- **E** Lasso regression
- Determining regularization strength

Leave-one-out cross-validation

- **•** For every $n = 1, ..., N$:
	- **The Train the model on every datapoint except the n-th**
	- Compute the test error on the held-out point
- Average the test errors

123

CS4641B Machine Learning | Fall 2020 34

n

K-fold cross-validation

- **•** Split the data into K subsets or folds
- **•** For every $k = 1, ..., K$:
	- **The Train the model on every fold except the** k **-th fold**
	- Compute the test error
- Average the test errors

CS4641B Machine Learning | Fall 2020 35

Choosing λ using validation dataset

Pick up the λ with the lowest mean value of E_{RMS} obtained from cross-validation