
The week ahead
▪ Quiz 7: mean is 78% and average completion time 5min 48sec (please, check practice 

questions!)

▪ Focus videos: PCA and linear regression available on the class website Tue, Oct 13th

▪ Quiz 8, Friday, Oct 10th 6am until Oct 10th 11:59am (noon)
▪ Regularization and Naïve Bayes

▪ Assignment 3 Early bird special → 1 complete programming question by Mon, Oct 19th

11:59pm (midnight)
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Coming up soon



These slides are adapted based on slides from Andrew Zisserman, Jonathan Taylor, Chao Zhang and Yaser Abu-Mostafa and Mahdi Roozbahani

CS4641B Machine Learning

Lecture 15: Regularized linear 
regression
Rodrigo Borela ‣ rborelav@gatech.edu



Outline
▪ Overfitting and regularized learning
▪ Ridge regression
▪ Lasso regression
▪ Determining regularization strength

▪ Complementary reading: Bishop PRML – Chapter 1, Section 1.1; Chapter 3, Section 3.1 
through 3.2.
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Outline
▪ Overfitting and regularized learning
▪ Ridge regression
▪ Lasso regression
▪ Determining regularization strength
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Regression: recap

▪ Suppose we are given a training set of 𝑁 observations and 𝐷 features: 
𝐱1, 𝑡1 , 𝐱2, 𝑡2 , … , 𝐱𝑁, 𝑡𝑁 , 𝐱𝑛 ∈ ℝ

𝐷 and 𝑡𝑛 ∈ ℝ

▪ Assuming 𝑡 = 𝑦 𝐱,𝐰 + 𝜖

▪ Regression problem is to estimate 𝑦 𝐱,𝐰 from this data
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Regression: recap

▪ If 𝑦 is a linear function of 𝐱, we have 𝑦 𝐱,𝐰 = 𝑤0 +𝑤1𝑥1 +⋯+𝑤𝐷𝑥𝐷

▪ Or using a basis function 𝜙𝑚, we have:
𝑦 𝐱,𝐰 = σ𝑚=0

𝑀−1𝑤𝑚𝜙𝑚 𝐱 = 𝐰𝑻𝝓 𝐱 , where 𝐰 ∈ ℝ𝑀

▪ Example, polynomial basis function of degree 𝑀 − 1:
𝑦 𝑥,𝐰 = 𝑤0𝑥

0 +𝑤1𝑥
1 +⋯+𝑤𝑀−1𝑥

𝑀−1
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Which one is better?
▪ Can we increase the maximal polynomial degree such that the curve passes through all training 

points?
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▪ The training error is very low, but the error on test set is large.
▪ The model captures not only patterns but also noisy nuisances in the training data.

The overfitting problem 𝐸𝑅𝑀𝑆 =
1

𝑁


𝑛=1

𝑁

𝑡𝑛 −𝐰𝑻𝝓 𝐱𝑛
2
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The overfitting problem

▪ In regression, overfitting is often associated with large weights (severe oscillation)
▪ How can we address overfitting?

𝐰 = 0.35, 232.37, −5321.83, … , 125201.43 𝑇𝐰 = 0.82, −1.27 𝑇

CS4641B Machine Learning | Fall 2020 9



The overfitting problem

▪ But what if I don’t have more data?
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Fit a linear line on sinusoidal with just two data points 

Put a brake on fitting

Regularization
(smart way to cure overfitting disease)
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Who is the winner?

𝑏𝑖𝑎𝑠 = 0.21; 𝑣𝑎𝑟 = 1.69 𝑏𝑖𝑎𝑠 = 0.23; 𝑣𝑎𝑟 = 0.33

ҧ𝑔 𝑥 = average over all lines
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▪ Model: 𝑦 𝐱,𝐰 = σ𝑚=0
𝑀−1𝑤𝑚𝜙𝑚 𝐱 = 𝐰𝑻𝝓 𝐱 , where 𝐰 ∈ ℝ𝑀

▪ Design matrix for a polynomial of degree 𝑀 − 1:

𝚽 =

𝜙0 𝐱1
𝜙0 𝐱2

⋮
𝜙0 𝐱𝑁

𝜙1 𝐱1
𝜙1 𝐱2

⋮
𝜙1 𝐱𝑁

…
…
⋱
…

𝜙𝑀−1 𝐱1
𝜙𝑀−1 𝐱2

⋮
𝜙𝑀−1 𝐱𝑁 𝑁×𝑀

= 𝚽

1
1
⋮
1

𝑥1
𝑥2
⋮
𝑥𝑁

…
…
⋱
…

𝑥1
𝑀−1

𝑥2
𝑀−1

⋮
𝑥𝑁
𝑀−1

𝑁×𝑀

▪ Target value and weight vectors:

𝐭 =

𝑡1
⋮

𝑡𝑁 𝑁×1

and 𝐭 =

𝑤0

⋮

𝑤𝑀−1 𝑀×1

▪ Sum-of-squares error

𝐸 𝐰 =
1

2


𝑛=1

𝑁

𝑡𝑛 −𝐰𝑻𝝓 𝐱𝑛
2
=
1

2
𝐭 − 𝚽𝐰 𝑇 𝐭 − 𝚽𝐰

Converting expressions to linear algebra notation
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Regularized learning
▪ Minimize:

෨𝐸(𝐰) = 𝐸𝐷 𝐰 + 𝜆𝐸𝑤(𝐰)
▪ Data-dependent error

𝐸𝐷 𝐰 =
1

2


𝑛=1

𝑁

𝑡𝑛 −𝐰𝑻𝝓 𝐱𝑛
2
=
1

2
𝐭 − 𝚽𝐰 𝑇 𝐭 − 𝚽𝐰

▪ Regularization term

𝐸𝑤 𝐰 =

𝑗=1

𝑀

𝑤𝑗
𝑞
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Regularized learning

▪ Ridge regression 𝑞 = 2 :

෨𝐸 𝐰 =
1

2


𝑛=1

𝑁

𝑡𝑛 −𝐰𝑻𝝓 𝐱𝑛
2
+
𝜆

2
𝐰𝑻𝐰

▪ Lasso regression (𝑞 = 1):

෨𝐸 𝐰 =
1

2


𝑛=1

𝑁

𝑡𝑛 −𝐰𝑻𝝓 𝐱𝑛
2
+ 𝜆

𝑗=1

𝑀

𝑤𝑗
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Outline
▪ Overfitting and regularized learning
▪ Ridge regression
▪ Lasso regression
▪ Determining regularization strength
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Regularized learning
▪ Minimize

෨𝐸(𝐰) =
1

2


𝑛=1

𝑁

𝑡𝑛 −𝐰𝑻𝝓 𝐱𝑛
2

+
𝜆

2
𝐰 2

2

෨𝐸 𝐰 =
1

2


𝑛=1

𝑁

𝐭 − 𝚽𝐰 𝑇 𝐭 − 𝚽𝐰 +
𝜆

2
𝐰𝑻𝐰
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3D view Top view

Example: regularized learning
▪ Given a dataset { 𝑥1, 𝑡1 , 𝑥2, 𝑡2 , … , 𝑥𝑁 , 𝑡𝑁 } (one single feature)
▪ We fit a polynomial of degree 1 (line) on the data: 𝑦 𝑥,𝐰 = 𝐰𝑇𝝓 𝑥𝑛 = 𝑤0 +𝑤1𝑥𝑛
▪ We can then write the data-dependent error (in this case the mean of the square error)

𝐸𝐷 𝐰 =
1

𝑁


𝑛=1

𝑁

𝑡𝑛 −𝐰𝑻𝝓 𝐱𝑛
2
=
1

𝑁


𝑛=1

𝑁

𝑡𝑛 − 𝑤0 +𝑤1𝑥𝑛
2

and plot it with respect to the two parameters 𝑤0 and 𝑤1:
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Example: regularized learning

▪ Let us plot the gradient of 𝐰𝑇𝐰 = 𝑤0 𝑤1
𝑤0

𝑤1
= 𝑤0

2 +𝑤1
2

▪ If you imagine standing at a point 𝑤0, 𝑤1
𝑇, 𝛻(𝐰𝑇𝐰) tells you which direction you 

should travel to increase the value of 𝐰𝑇𝐰 most rapidly:

𝛻(𝐰𝑇𝐰) =

𝜕

𝜕(𝑤0)
𝐰𝑇𝐰

𝜕

𝜕(𝑤1)
𝐰𝑇𝐰

=
2𝑤0

2𝑤1
≈

𝑤0

𝑤1

𝛻(𝐰𝑇𝐰) is a vector field 

▪ Any line passing through the center of the circle → most rapid increase
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3D view Top view

Example: regularized learning

▪ Plotting the regularization portion: 𝐸𝐰(𝐰) = 𝐰𝑇𝐰 = 𝑤0 𝑤1
𝑤0

𝑤1
= 𝑤0

2 +𝑤1
2

with respect to the two parameters 𝑤0 and 𝑤1:
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𝐰𝑢𝑛𝑟𝑒𝑔

𝐸 𝜃

𝑤1

𝑤0

Regularized learning: constrained optimization

▪ We can treat this as an optimization problem, where we are trying to minimize:

𝐸 𝐰 =
1

2
𝐭 − 𝚽𝐰 𝑇 𝐭 − 𝚽𝐰

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐰𝑇𝐰 ≤ C

▪ Find a solution in 𝐰𝑇𝐰 that minimizes 𝐸 𝐰
which is constant on the surface of the ellipsoid

𝐰𝑢𝑛𝑟𝑒𝑔: minimum E(w) possible
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𝐰𝑇𝐰 = 𝐶

𝐸 𝐰

𝛻𝐸 𝐰

𝛻(𝐰𝑇𝐰)

Regularized learning: constrained optimization

▪ Considering the 𝐸 𝐰 and 𝐶 what is a 𝐰 candidate?

▪ The gradient 𝛻𝐸 𝐰 in objective function which 
minimizes error (orthogonal to ellipse). Changes 
happen in orthogonal direction

▪ What is the orthogonal direction on the other surface?
It is a 𝐰 along a direction passing through center of the 
circle

▪ Applying the 𝐰𝑇𝐰, where is the best solution located?
On the boundary of the circle, as it is the closest one to 
the minimum absolute

CS4641B Machine Learning | Fall 2020 22

𝐰𝑢𝑛𝑟𝑒𝑔



𝐶 ↑ 𝜆 ↓
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Regularized learning: constrained optimization

▪ At the solution point we have:
∇𝐸 𝐰 ∝ −𝛻(𝐰𝑇𝐰)

▪ To obtain equality we multiply the gradient by a constant
𝛻𝐸 𝐰 = −𝜆𝐰

▪ We then recover our previous expression for the minimum
𝛻𝐸 𝐰 + 𝜆𝐰 = 0

▪ And we can rewrite the optimization problem as 
calculating the minimum of:

෨𝐸 =
1

2
𝐭 − 𝚽𝐰 𝑇 𝐭 − 𝚽𝐰 +

𝜆

2
𝐰𝑇𝐰

𝛻𝐸 𝐰
𝛻(𝐰𝑇𝐰)

𝐰𝑢𝑛𝑟𝑒𝑔

𝐸 𝐰



Ridge regression
▪ Minimize

෨𝐸 𝐰 =
1

2
𝐭 − 𝚽𝐰 𝑇 𝐭 − 𝚽𝐰 +

𝜆

2
𝐰𝑇𝐰

▪ Compute the derivative with respect to w and set it to zero

𝜕 ෨𝐸 𝐰

𝜕𝐰
= −𝚽𝑇 𝐭 − 𝚽𝐰 + 𝜆𝐰 = 0

−𝚽𝑇𝐭 + 𝚽𝑇𝚽𝐰+ 𝜆𝐈𝐰 = 𝟎

𝐰 = 𝚽𝑇𝚽+ 𝜆𝐈 −1𝚽𝑇𝐭
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Ridge regression
▪ Closed form solution

𝐰 = 𝚽𝑇𝚽+ 𝜆𝐈
−1
𝚽𝑇𝐭

This shows that there is a unique solution.

▪ If 𝜆 = 0 (no regularization), then:
𝐰 = 𝚽𝑇𝚽 −1𝚽𝑇𝐭 = 𝚽+𝐭

where 𝚽+ is the pseudo-inverse of 𝚽

▪ Adding the term 𝜆𝐈 improves the conditioning of the inverse, since if 𝚽 is not full rank, 
then 𝚽𝑇𝚽+ 𝜆𝐈 will be (provided 𝜆 is sufficiently large)

▪ As 𝜆 → ∞, 𝐰 →
1

𝜆
𝚽𝑇𝐭 → 𝟎
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Ridge regression: example
▪ The red curve is the true function, which is not polynomial.
▪ The data points are samples from the curve with added noise
▪ There is a choice in both the degree, M, of the basis functions used and the strength 

of the regularization

𝑦 x,𝐰 = 𝐰𝑻𝝓 x

෨𝐸 𝐰 =
1

2


𝑛=1

𝑁

𝑡𝑛 −𝐰𝑻𝝓 𝐱𝑛
2
+
𝜆

2
𝐰𝑻𝐰
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Ridge regression: example
𝑀 − 1 = 3 (polynomial of degree 3) 𝑀 − 1 = 5 (polynomial of degree 5)
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Example

𝑁 = 9 datapoints 
𝑀 − 1 = 7
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Outline
▪ Overfitting and regularized learning
▪ Ridge regression
▪ Lasso regression
▪ Determining regularization strength
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Lasso regularization 
▪ LASSO = Least absolute shrinkage and selection
▪ Minimize with respect to 𝐰 ∈ ℝ𝑀

෨𝐸 𝐰 =
1

2


𝑛=1

𝑁

𝑡𝑛 −𝐰𝑻𝝓 𝐱𝑛
2

+ 𝜆 

𝑚=0

𝑀−1

𝑤𝑚

▪ This is a quadratic optimization problem
▪ There is a unique solution
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𝐰𝑢𝑛𝑟𝑒𝑔

𝐸 𝐰 constant on the 
surface of the ellipsoid

𝑤0

𝑤1

𝑪

𝑪

−𝑪

−𝑪

Sharp edges

▪ Minimize:

𝐸 𝐰 =
1

2
𝐭 − 𝚽𝐰 𝑇 𝐭 − 𝚽𝐰

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑚=0

𝑀−1

𝑤𝑚 ≤ 𝐶

▪ One advantage of Lasso regression is the 
potential to obtain sparse solutions

▪ Application to feature selection

Lasso regression
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Regularized learning
▪ Ridge regression 𝑞 = 2 :

෨𝐸 𝐰 =
1

2


𝑛=1

𝑁

𝑡𝑛 −𝐰𝑻𝝓 𝐱𝑛
2
+
𝜆

2
𝐰𝑻𝐰

▪ Lasso regression (𝑞 = 1):

෨𝐸 𝐰 =
1

2


𝑛=1

𝑁

𝑡𝑛 −𝐰𝑻𝝓 𝐱𝑛
2
+ 𝜆

𝑗=1

𝑀

𝑤𝑗

Constraint region

Unregularized error
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Outline
▪ Overfitting and regularized learning
▪ Ridge regression
▪ Lasso regression
▪ Determining regularization strength
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Leave-one-out cross-validation
▪ For every n = 1,… , 𝑁:

▪ Train the model on every datapoint except the 𝑛-th
▪ Compute the test error on the held-out point

▪ Average the test errors
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K-fold cross-validation
▪ Split the data into 𝐾 subsets or folds
▪ For every 𝑘 = 1,… , 𝐾:

▪ Train the model on every fold except the 𝑘-th fold
▪ Compute the test error

▪ Average the test errors
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Pick up the 𝜆 with the lowest mean value of 𝐸𝑅𝑀𝑆 obtained from cross-validation

Choosing 𝜆 using validation dataset
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