
Happy Wednesday!
▪ Assignment 2 due tonight, 11:59pm (midnight)

▪ Assignment 3 out!

▪ Quiz 7, Friday, Oct 9th 6am until Oct 10th 11:59am (noon)
▪ PCA and linear regression

▪ Touch-point 2: deliverables due Mon, Oct 30th, live-event Wed, Nov 2nd

▪ Single-slide presentation outlining progress highlights and current challenges 
▪ Three-minute pre-recorded presentation with your progress and current challenges

▪ Project midpoint report due Nov 6th 11:59pm (midnight)
▪ GitHub page with the results you have achieved utilizing unsupervised learning
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Project… what’s next?



Unsupervised learning
▪ Probability and statistics and information theory

▪ Covariance and correlation matrices
▪ Entropy and mutual information

▪ Clustering
▪ K-Means
▪ DBSCAN
▪ Probabilistic (using GMM)
▪ Hierarchical
▪ Clustering evaluation

▪ Probability density estimation
▪ Parametric (exponential, Bernoulli, Gaussian)
▪ Non-parametric (histograms, kernel density estimation)

▪ Dimensionality reduction
▪ Feature selection
▪ Principal component analysis
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Project midterm report
▪ Apply unsupervised learning techniques to your data

▪ Create good visualizations that enable you to understand your data
▪ PCA
▪ Histograms
▪ Confusion matrix
▪ Heatmaps

▪ When appropriate utilize useful metrics to evaluate your work
▪ External metrics
▪ Internal metrics

▪ Ask insightful questions of your data
▪ “Do these results I get when applying these techniques make sense with what I understand

about the problem and the data?”
▪ “I have 30 classes in my dataset, but when I use the elbow method with K-means clustering I 

get 16 clusters instead: what does this mean?”
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Pep talk
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These slides are adapted based on slides from Le Song, Chao Zhang, Yaser Abu-Mostafa, Andrew Zisserman and Mahdi Roozbahani

CS4641B Machine Learning

Lecture 14: Linear regression
Rodrigo Borela ‣ rborelav@gatech.edu



Outline
▪ Supervised Learning
▪ Linear Regression: least squares with normal equations
▪ Linear Regression: least squares with gradient descent

▪ Complementary reading: Bishop PRML – Chapter 1, Section 1.1; Chapter 3, Section 3.1 
through 3.2. (Hot tip: check out section Chapter 1, Section 1.2.5)
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Outline
▪ Supervised Learning
▪ Linear Regression: least squares with normal equations
▪ Linear Regression: least squares with gradient descent

CS4641B Machine Learning | Fall 2020 7



Supervised learning: overview
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Class estimation Curve fitting

When 𝑦 is continuous: regressionWhen 𝑦 is discrete: classification

Supervised learning: two types of tasks
▪ Given training data: { 𝐱1, 𝑡1 , 𝐱2, 𝑡2 , … , 𝐱𝑁, 𝑡𝑁 }

▪ Learn a function: 𝑓 𝐱 : 𝑦 = 𝑓(𝐱)
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Unsupervised vs. supervised learning
▪ Example: clustering vs. classification
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Example (I): handwritten digit recognition
▪ Start with training data, e.g. 6,000 examples of each digit

▪ Can achieve testing error of 0.4% 
▪ One of the first commercial and widely used ML systems (for zip codes and checks)
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Example (I): handwritten digit recognition

▪ Images are 28 × 28 pixels
▪ Represent input image as a vector 𝐱 ∈ ℝ784

▪ Learn a classifier 𝑓(𝐱) such that,
𝑓: 𝐱 → 0,1,2,3,4,5,6,7,8,9
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SPAM

NOT SPAM

Example (II): spam detection

▪ Task is to classify email into spam/non-spam
▪ Data 𝐱 bag-of-words vector
▪ Requires a learning system as “enemy” keeps innovating
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Regression example (I): apt. rent prediction
▪ Suppose you are to move to Atlanta and you want to find the most reasonably priced 

apartment satisfying your needs:
square-footage, number of bedrooms, distance to campus
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Regression example (I): apt. rent prediction
▪ Features: living area, distance to campus, number of bedrooms
▪ Denoted as 𝐱 = 𝑥1, 𝑥2, … , 𝑥𝐷

𝑇

▪ Target: rent
▪ Denoted as 𝑡

▪ Training set:

𝐗 =

𝐱1
𝑇

𝐱2
𝑇

…

𝐱𝑁
𝑇

∈ ℝ𝑁×𝐷 and 𝐭 =

𝑡1
𝑡2
…

𝑡𝑁

∈ ℝ𝑁
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Regression example (II): stock price prediction
▪ Task is to predict stock price at future date
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Outline
▪ Supervised Learning
▪ Linear Regression: least squares with normal equations
▪ Linear Regression: least squares with gradient descent
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Linear regression
▪ Assume y is a linear function of x (features)

𝑦 𝐱,𝐰 = 𝑤0 +𝑤1𝑥1 +⋯+𝑤𝐷𝑥𝐷

▪ We can extend these using a basis function 𝜙𝑚 𝐱 :

𝑦 𝐱,𝐰 = 𝑤0 + ෍

𝑚=1

𝑀−1

𝑤𝑚𝜙𝑚 𝐱

Or if we pick 𝜙0 𝐱 = 1

𝑦 𝐱,𝐰 = ෍

𝑚=0

𝑀−1

𝑤𝑚𝜙𝑚 𝐱 = 𝐰𝑻𝝓 𝐱
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What are these basis functions?
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Linear regression
▪ We assume that the target variable t is given by the sum of the deterministic function 

𝑦 𝐱,𝐰 and a random noise 𝜖
𝑡 = 𝑦 𝐱,𝐰 + 𝜖

▪ Our objective is to find the 𝐰 that minimizes the difference between the target and 
predicted values. What would be a good objective function?

𝑡

𝑥
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Least squares method
▪ Given 𝑁 datapoints, find 𝐰 that minimizes the sum-of-squares:

𝐿 𝐰 =
1

2
෍

𝑛=1

𝑁

𝑡𝑛 −𝐰𝑻𝝓 𝐱𝑛
2

▪ Good old trick: set the gradient of the objective function wrt 𝐰 to zero:

𝜕𝐿 𝐰

𝜕𝐰
= ෍

𝑛=1

𝑁

𝑡𝑛 −𝐰𝑻𝝓 𝐱𝑛 𝝓 𝐱𝑛
𝑇

0 = ෍

𝑛=1

𝑁

𝑡𝑛𝝓 𝐱𝑛
𝑇 −𝐰𝑻 ෍

𝑛=1

𝑁

𝝓 𝐱𝑛 𝝓 𝐱𝑛
𝑇

𝐰 = 𝚽𝑇𝚽 −1𝚽𝑇𝐭 (Normal equations)

𝚽+ = 𝚽𝑇𝚽 −1𝚽𝑇 (Moore-Penrose inverse)
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Least squares method
▪ The design matrix:

𝚽 =

𝜙0 𝐱1
𝜙0 𝐱2

⋮
𝜙0 𝐱𝑁

𝜙1 𝐱1
𝜙1 𝐱2

⋮
𝜙1 𝐱𝑁

…
…
⋱
…

𝜙𝑀−1 𝐱1
𝜙𝑀−1 𝐱2

⋮
𝜙𝑀−1 𝐱𝑁 𝑁×𝑀

▪ If our basis function 𝝓 𝐱𝑛 just maps the features with a leading 1, the design matrix becomes:

𝚽 =

1
1
⋮
1

𝑥11
𝑥21
⋮

𝑥𝑁1

…
…
⋱
…

𝑥1𝐷
𝑥2𝐷
⋮

𝑥𝑁𝐷 𝑁× 𝐷+1

▪ If our basis function is a polynomial 𝜙𝑚 𝑥 = 𝑥𝑚, of degree 𝑀 − 1 and a data point 𝐱𝑛 = 𝑥𝑛
(scalar), the design matrix becomes:

𝚽 =

1
1
⋮
1

𝑥1
𝑥2
⋮
𝑥𝑁

…
…
⋱
…

𝑥1
𝑀−1

𝑥2
𝑀−1

⋮
𝑥𝑁
𝑀−1
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Least squares method

▪ Example: 𝐗 =

3 1,500 4
5 2,830 8
4
3

2,420
1,870

6
4

with simple mapping 𝝓 𝐱𝑛 with a leading 1:

𝚽 =

1
1
1
1

3
5
4
3

1,500
2,830
2,420
1,870

4
8
6
4 𝑁× 𝐷+1

▪ Example: 𝐗 =

1,500
2,830
2,420
1,870

with polynomial 𝜙𝑚 𝑥 = 𝑥𝑚, of degree 𝑀 − 1 = 3:

𝚽 =

1
1
1
1

1,500
2,830
2,420
1,870

1,5002

2,8302

2,4202

1,8702

1,5003

2,8303

2,4203

1,8703
𝑁×𝑀
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𝐗 = 0, 0.5, 1, … , 9.5, 10 𝑇 𝑦 𝑥, 𝑤 = 𝑤0 +𝑤1𝑥 + 𝑤2𝑥
2

𝑤0 = 3;𝑤1 = 1;𝑤2 = −0.5𝒕 = 3, 3.4875, 3.95,… , 7.98, 8 𝑇

x

y

What is happening in polynomial regression?
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x

y

Adding to the feature space
▪ We are fitting a 𝐷-dimensional hyperplane in a 𝐷 + 1 dimensional hyperspace (in this example a 

2D plane in a 3D space). That hyperplane really is “flat” / “linear” in 3D. It can be seen a non-linear 
regression (a curvy line) in our 2D example in fact it is a flat surface in 3D.

▪ So the fact that it is mentioned that the model is linear in parameters, it is shown here
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𝒚 =

3.0
3.4875

⋮
8 𝑁×1

Adding to the feature space

𝚽 =

1
1
⋮
1

0
0.5
⋮
10

0
0.25
⋮

100 𝑁×𝟑
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Increasing the polynomial degree
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Which one is better?
▪ Can we increase the maximal polynomial degree such that the curve passes through all training 

points?
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Dataset: 𝐗𝑁×𝐷
𝐷 = dimension

𝑁 = datapoints (instances)

𝚽𝑇𝚽 = (𝐷 + 1) × 𝑁

𝐰 = 𝚽𝑇𝚽 −1𝚽𝑇𝐭

=

Not a big matrix because 𝑁 ≫ 𝐷, this matrix is invertible most of the times. If we are VERY unlucky and 
columns of 𝚽𝑇𝚽 are not linearly independent (it’s not a full rank matrix), then it is not invertible. 

Least squares method
▪ Let us assume that our basis function is simply mapping the points in the vector 𝐱𝑛 with a leading 1:

𝑁 × (𝐷 + 1) (𝐷 + 1) × (𝐷 + 1)
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Solving normal equations
𝐰 = 𝚽𝑇𝚽 −1𝚽𝑇𝐭

▪ Pros: a single-shot algorithm! Easiest to implement.
▪ Cons: need to compute inverse 𝚽𝑇𝚽 −1, expensive, numerical issues (e.g. matrix 

could be singular, etc.)
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Outline
▪ Supervised Learning
▪ Linear Regression: least squares with normal equations
▪ Linear Regression: least squares with gradient descent
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Alternative methods for optimization
▪ The matrix inversion in 𝐰 = 𝚽𝑇𝚽 −1𝚽𝑇𝐭 can be very expensive to compute. Let’s 

consider the mean of the sum-of-squares error:

𝐿 𝐰 =
1

𝑁
෍

𝑛=1

𝑁

𝑡𝑛 −𝐰𝑻𝝓 𝐱𝑛
2

▪ Calculating the derivative wrt 𝐰, we obtain:

𝜕𝐿 𝐰

𝜕𝐰
=
1

𝑁
෍

𝑛=1

𝑁

𝑡𝑛 −𝐰𝑻𝝓 𝐱𝑛 𝝓 𝐱𝑛
𝑇

𝐿 𝐰

𝐰
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Methods for optimization
▪ Gradient descent

𝐰 𝜏+1 = 𝐰 𝜏 − 𝛼
𝜕𝐿 𝐰

𝜕𝐰
→ 𝐰 𝜏+1 = 𝐰 𝜏 −

𝛼

𝑁
෍

𝑛=1

𝑁

𝑡𝑛 −𝐰 𝜏
𝑇𝝓 𝐱𝑛 𝝓 𝐱𝑛

𝑇

▪ Pros: fast-converging, easy to implement
▪ Cons: need to read all data

▪ Stochastic gradient descent

𝐰 𝜏+1 = 𝐰 𝜏 − 𝛽
𝜕𝐿 𝐰

𝜕𝐰
→ 𝐰 𝜏+1 = 𝐰 𝜏 − 𝛽 𝑡𝑛 −𝐰 𝜏

𝑇𝝓 𝐱𝑛 𝝓 𝐱𝑛
𝑇

▪ Pros: online, low per-step cost
▪ Cons: maybe slow-converging
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Stochastic gradient descent: example
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