
The week ahead
▪ Quiz 6: mean is 91% and average completion time 4min 36sec!

▪ Assignment 2 due Oct 7th 11:59pm (midnight)

▪ Assignment 3 out Oct 7th

▪ Quiz 7, Friday, Oct 9th 6am until Oct 10th 11:59am (noon)
▪ PCA and linear regression

▪ Office hours sign-up sheet

▪ Lecture recordings

▪ Focus videos
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Important notices



These slides are adopted based on slides from Le Song, Chao Zhang, Barnabás Póczos and Mahdi Roozbahani

CS4641B Machine Learning

Lecture 13: Dimensionality 
reduction
Rodrigo Borela ‣ rborelav@gatech.edu



Outline
▪ Overview
▪ Principle component analysis: main idea
▪ The PCA algorithm
▪ PCA and SVD
▪ Summary

▪ Complementary reading: Bishop PRML – Chapter 12, Section 12.1
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Difficult to see the correlations of different features

53 blood and urine samples (features) from 65 people (datapoints)

Motivation
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Motivation
▪ Is there a better representation than the coordinate axes?

▪ Is it really necessary to show all the 53 dimensions?
▪ What if there are strong correlations between some of the features?

▪ How could we find the smallest subspace of the 53-D space that keeps the most 
information about the original data?

Solution: dimensionality reduction
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Example: dimensionality reduction for text
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Each document is a datapoint

Each word is a feature

Bag-of-words representations

Vector in ℝ𝐷
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… many more features

Bag-of-words: term-document data matrix
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What is dimensionality reduction?
▪ The process of reducing the number of random variables under consideration

▪ Feature selection, combination or transformation
▪ Linear or nonlinear operations

𝑓 𝐱 :ℝ𝐷 → ℝ𝑀

vector in ℝ𝐷

𝐱 =

𝑥1
𝑥2
…
𝑥𝐷

𝐳 =

𝑧1
𝑧2
…
𝑧𝑀

Original datapoint Reduced representation

𝑀 ≪ 𝐷
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Applications dimensionality reduction
▪ The dimension-reduced data can be used for:

▪ Visualizing, exploring and understanding the data
▪ Aggregating weak signals in the data
▪ Cleaning the data
▪ Speeding up subsequent learning task
▪ Building simpler model later

▪ Key questions of a dimensionality reduction algorithm:
▪ What is the criterion for carrying out the reduction process?
▪ What are the algorithm steps?
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Outline
▪ Overview
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▪ PCA and SVD
▪ Summary
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Example: classification
𝑥2
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Example: classification
𝑥2

𝑥1

𝑧2

𝑧1

𝐗 =
𝐱1
𝑇

…
𝐱𝑁
𝑇

𝑁×𝐷

𝐙 =
𝒛1
𝑇

…
𝒛𝑁
𝑇

𝑁×𝐷

𝐙 = 𝐗𝐖 = 𝐗
𝑤11 𝑤12
𝑤21 𝑤22

𝑧𝑛1 = 𝑥𝑛1𝑤11 + 𝑥𝑛2𝑤21
𝑧𝑛2 = 𝑥𝑛2𝑤12 + 𝑥𝑛2𝑤22
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Example: classification
𝑥2

𝑥1

𝑧2

𝑧1

𝑣𝑎𝑟 𝑥 =
1

𝑁
෍

𝑛=1

𝑁

𝐱𝑛 − 𝝁 2

𝑣𝑎𝑟 𝑧 =
1

𝑁
෍

𝑛=1

𝑁

𝐱𝑛𝐰 − 𝝁𝐰 2
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PCA: Dimension reduction by capturing variation
▪ There are many criteria (geometric based, information theory based, etc.)

▪ One possible criterion: capture variation in the data
▪ Variations are “signals” or information in the data
▪ Need to normalize each variable first

▪ In the process, also discover variables or dimensions that are highly correlated
▪ Represent highly related phenomena
▪ Combine them to form a stronger signal
▪ Lead to simpler presentation
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Capturing variation in data
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Two equivalent perspectives of PCA
▪ Orthogonal projection of the data onto a lower-dimension linear space that:

▪ Maximizes variance of project data (purple line)

▪ Minimizes mean squared distance between
▪ Data point
▪ Projections (sum of blue lines)

𝐰𝟏
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Example: iterative algorithm for PCA
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Outline
▪ Overview
▪ Principle component analysis: main idea
▪ The PCA algorithm
▪ PCA and SVD
▪ Summary
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Formulating the problem
▪ Given 𝑁 data points, 𝐱1, 𝐱2, … , 𝐱𝑛 ∈ ℝ𝐷 with their mean:

𝝁 =
1

𝑁
෍

𝑛

𝑁

𝐱𝑛

▪ Find direction 𝐰 ∈ ℝ𝐷 where: 

𝐰 2 = ෍

𝑑 ∈ 𝐷

𝑤𝑑
2 = 1

▪ Such that the variance (or variation) of the data along direction 𝐰 is maximized

max
𝐰 =1

1

𝑁
෍

𝑛=1

𝑁

𝐱𝑛𝐰 − 𝝁𝐰 2

variance in new feature space
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▪ Manipulate the objective with linear algebra

1

𝑁
෍

𝑛=1

𝑁

(𝐱𝑛𝐰− 𝝁𝐰)2 =
1

𝑁
෍

𝑛=1

𝑁

((𝐱𝑛−𝝁)𝐰)
2 =

1

𝑁
෍

𝑛=1

𝑁

𝐱𝑛 − 𝝁 𝐰
𝑇
( 𝐱𝑛 − 𝝁 𝐰)

(remember that 𝐴𝐵 𝑇 = 𝐵𝑇𝐴𝑇)

1

𝑁
෍

𝑛=1

𝑁

𝐰𝑇 𝐱𝑛 − 𝝁 𝑇 𝐱𝑛 − 𝝁 𝐰

𝐰𝑇
1

𝑁
෍

𝑛=1

𝑁

𝐱𝑛 − 𝝁 𝑇 𝐱𝑛 − 𝝁 𝐰 = 𝐰𝑇𝐂𝐰

Formulating the problem
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Equivalence to the eigenvalue problem
▪ Optimization problem

max
𝐰 2=1

𝐰𝑇𝐂𝐰

▪ We can rewrite the constraint as follows:
𝐰 2 = 1 → 𝐰 2

2 = 12 → 𝐰𝑇𝐰 = 1 → 1 −𝐰𝑇𝐰 = 0

▪ Form Lagrangian function of the optimization problem
𝐿 𝐰, 𝜆 = 𝐰𝑇𝐂𝐰 + 𝜆(1 − 𝐰𝑇𝐰)

▪ If 𝐰 is a maximum of the original optimization problem then there exists a 𝜆 where 
𝐰, 𝜆 is a stationary point of 𝐿 𝐰, 𝜆 , therefore:

𝜕𝐿

𝜕𝐰
= 0 → 2𝐂𝐰 − 2𝜆𝐰 = 0 → 𝐂𝐰 = 𝜆𝐰
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Equivalence to the eigenvalue problem
▪ Given a symmetric matrix 𝐂 ∈ ℝ𝐷×𝐷

▪ Find a vector 𝐰 ∈ ℝ𝐷 and 𝐰 2 = 1

▪ Such that 
𝐂𝐰 = 𝜆𝐰

▪ There will be multiple solutions of 𝐰1, 𝐰2, … ,𝐰𝐷 for its corresponding 𝜆1, 𝜆2, … , 𝜆𝐷

▪ They are orthonormal:

𝐰𝑖
𝑇𝐰𝑖 = 1 and 𝐰𝑖

𝑇𝐰𝑗 = 0

CS4641B Machine Learning | Fall 2020 25

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors


Principal direction of the data

𝐰1

CS4641B Machine Learning | Fall 2020 26



Variance in the principal direction
▪ Principal direction 𝐰 satisfies:

𝐂𝐰 = 𝜆𝐰 = 𝐰𝜆

▪ Variance in the principal direction is

𝐰𝑇𝐂𝐰 = 𝐰𝑇𝐰𝜆

▪ Given that 𝐰𝑇𝐰 = 𝐰 𝟐
𝟐 = 1

𝐰𝑇𝐂𝐰 = 𝜆
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Multiple principal directions
▪ Directions 𝐰1, 𝐰2, … ,𝐰𝐷 has the largest variances but are orthogonal to each other

▪ Take the eigenvectors 𝐰1, 𝐰2, … ,𝐰𝐷 of 𝐂 corresponding to:
▪ The largest eigenvalue 𝜆1,
▪ The second largest eigenvalue 𝜆2
▪ …
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2

1

Other principal directions

𝐰1

𝐰2
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Relations between principal components
▪ Principal component #1: points in the direction of the largest variance

▪ Each subsequent principal component:
▪ Is orthogonal to the previous one, and
▪ Points in the directions of the largest variance of the residual subspace
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PCA algorithm
▪ Given 𝑁 data points, 𝐱1, 𝐱2, … , 𝐱𝑁 ∈ ℝ𝐷

▪ Step 1: estimate the mean and covariance matrix from data

𝝁 =
1

𝑁
σ𝑛=1
𝑁 𝐱𝑛 and 𝐂 =

1

𝑁
σ𝑛=1
𝑁 𝐱𝑛 − 𝝁 𝑇 𝐱𝑛 − 𝝁

▪ Step 2: take the eigenvectors 𝐰1, 𝐰2, … ,𝐰𝐷 of 𝐂 corresponding to the largest 
eigenvalue 𝜆1, the second largest eigenvalue 𝜆2, …

▪ Step 3: Compute reduced representation

𝑧𝑛 =

𝐰1
𝑇

𝐱𝑛 − 𝝁

𝜆1

𝐰2
𝑇

𝐱𝑛 − 𝝁

𝜆2
…

𝐰𝑀
𝑇

𝐱𝑛 − 𝝁

𝜆𝑀

𝜆 = 𝜎2
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Outline
▪ Overview
▪ Principle component analysis: main idea
▪ The PCA algorithm
▪ PCA and SVD
▪ Summary
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𝑈
Σ

𝑉𝑇

(𝐷 < 𝑁)

Singular value decomposition

𝑢11 ⋯ 𝑢1𝑁
⋮ ⋱ ⋮

𝑢𝑁1 ⋯ 𝑢𝑁𝑁 𝑁×𝑁

𝑠11 ⋯ 0
0 ⋱ ⋮
⋮
0
0

0
0
0

𝑠𝐷𝐷
0
0 𝑁×𝐷

𝑣11 ⋯ 𝑣1𝐷
⋮ ⋱ ⋮
𝑣𝐷1 ⋯ 𝑣𝐷𝐷 𝐷×𝐷

▪ 𝐗𝑁×𝐷, N is the number of dataset instances, D is the dimensionality of each instance 
(i.e. the number of features) and 𝐗 is a centered matrix

▪ The singular value decomposition is given by

𝐗 = 𝐔𝚺𝐕T
𝐔𝑁×𝑁 → 𝑢𝑛𝑖𝑡𝑎𝑟𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 → 𝐔𝐔T = 𝐈
𝚺𝑁×𝐷 → 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥
𝐕𝐷×𝐷 → 𝑢𝑛𝑖𝑡𝑎𝑟𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 → 𝐕𝐕T = 𝐈
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Covariance matrix and SVD

▪ Starting with the covariance matrix expression 𝐂𝐷×𝐷 =
𝐗T𝐗

𝑁
and replacing 

𝐗 = 𝐔𝚺𝐕T into the expression for the covariance, we obtain:

𝐂 =
𝐗T𝐗

𝑁
→ 𝐂 =

𝐕𝚺T𝐔T𝐔𝚺𝐕T

𝑁
=
𝐕𝚺2𝐕T

𝑁

▪ Multiplying the result by 𝐕 on the right hand side:

𝐂𝐕 = 𝐕
Σ2

𝑁
𝐕T𝐕 = 𝐕

𝚺2

𝑁
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Covariance matrix and SVD

▪ According to the eigendecomposition definition 𝐂𝐕 = 𝐕𝚲, therefore the 
eigenvalues of the covariance matrix are:

𝜆𝑖 =
Σi
2

𝑁

▪ 𝜆𝑖: eigenvalue of 𝐂 or covariance matrix
▪ Σ𝑖: singular value of 𝐗 matrix

So we can directly calculate eigenvalue of a covariance matrix by having the 
singular values of matrix 𝐗

CS4641B Machine Learning | Fall 2020 35



SVD and PCA

▪ The 𝐕 matrix corresponds to the eigenvectors of the covariance matrix 
(principal directions)

𝜆𝑖 =
Σi
2

𝑁

▪ To project the data matrix onto the principal directions, we compute:
𝐗𝑝𝑟𝑜𝑗 = 𝐗𝐕 = 𝐔𝚺

Where 𝑋𝑝𝑟𝑜𝑗 consists of a linear combination of the original data

▪ We then truncate our projected matrix to the number of principal 
components 𝑀 we would like to use.

CS4641B Machine Learning | Fall 2020 36



𝑋 = 𝑈Σ𝑉𝑇

Principal components or projections on principal directions

Eigenvalues: 𝜆𝑖 =
𝚺𝑖
2

𝑁
Eigenvectors (principal directions) 𝐕

In fact, using the SVD to perform PCA makes much better sense numerically than 
forming the covariance matrix to begin with, since the formation of 𝐗𝑻𝐗 can cause 
loss of precision.

SVD and PCA
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Are principal components good for classification?
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Why PCA potentially works in classification? 

▪ The dimension with the largest variance corresponds to the dimension with 
the largest entropy and thus encodes the most information (Information 
Theory). 

▪ The smallest eigenvectors will often simply represent noise components, 
whereas the largest eigenvectors often correspond to the principal 
components that define the data.
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▪ Summary
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Summary

▪ PCA
▪ Finds orthonormal basis for data
▪ Sorts dimensions in order of “importance”
▪ Discard low significance dimensions

▪ Uses
▪ Get concise low-dimensional representations
▪ Remove noise

▪ Not magic
▪ Doesn’t know class labels
▪ Can only capture linear variations
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Image compression using PCA
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