The week ahead

" Quiz5: meanis 81% and average completion time 5min 40sec!

" Touch-point 1 deliverables due tonight at 11:59pm
"  Three-min video + one-slide presentation — Piazza thread

=  Touch-point 1, Wed Sep 30t" during class time

= Everyone should watch the pitch videos from the teams in their own cluster and be prepared to
give feedback/ask questions

= Quiz 6, Friday, Oct 2"d 6am until Oct 374 11:59am (noon)

= Density estimation

=  Project proposal due Oct 2" 11:59pm (midnight)
" Link to GitHub page + pdf printout of your webpage — Gradescope

= Assignment 2 due Oct 5t 11:59pm (midnight)
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CS4641B Machine Learning
Lecture 12: Density estimation

Rodrigo Borela » rborelav@gatech.edu

Adopted from slides from Le Song and Mahdi Roozbahani



Outline

= Qverview
" Parametric density estimation
= Nonparametric density estimation

"  Complementary reading: Bishop PRML — Chapter 2, Parametric methods Sections 2.1
through 2.4 and Nonparametric methods Section 2.5 through 2.5.2
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Outline

= QOverview
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Why density estimation?

" Learn more about the “shape” of the data cloud

G ———v

7.5}

=
- - -
S %l fH N
y i, 2 » :" ..
s/ v | e ¥ e
! S > - L Ja bl
/ ': . . . v
/ .
* |

0

= Access the density of see‘ing a particular data point
" |sthis a typical data point? (high density value)
" |sthis an abnormal data point/outlier? (low density value)

* Building block for more sophisticated learning algorithms
= (lassification, regression, graphical models
" Asimple recommendation system
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Why density estimation?
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Example: test scores

Histogram is an estimate of the probability distribution of a continuous variable
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Example: test scores
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Parametric density estimation

" Model which can be described by a fixed number of parameters

= Discrete case: e.g. Bernoulli distribution
p(x|0) = 6%(1—6)'7*

one parameter 8 (probability of possible outcome), 8 € [0,1], which generates a family of
models F = {p(x|0)| 6 € |0,1]}

= Continuous case: e.g. Gaussian distribution in R?
( )

1
p(X|pw,E) = ——F—expi—-E-wW'E 1 x—-w

eozizz L 4 J

two sets of parameters {u, £}, which again generate a family of models
F ={px|u )| u € RP, L e RP*P {0,1}}

Y
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Nonparametric density estimation

" \What are nonparametric models?
" “Nonparametric” does not mean there are no parameters
" (Can not be described by a fixed number of parameters
" One can think there are many parameters

= Examples: histogram and kernel density estimator

o - - 8048 Density
estimate

Kernel
function:

Frequency

= o — I 35 20
f T T Data
] , 3 4 points

Histogram Kernel density estimator
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Parametric vs. nonparametric density estimation

statistics vs linear algebra (Gaussian) - .
110 statistics vs linear algebra
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Parametric Nonparametric
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arametric vs. nonparamet
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Outline

" Parametric density estimation
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Estimating parametric models

" Avery popular estimator is the maximum likelihood estimator (MLE), which is simple
and has good statistical properties

=  Assume that we have N data points X = {X4, ...,Xy} drawn independently and

identically (iid) from some distribution p™*(x)

= Want to fit the data with a model p(x|0) with parameter 8, we want to maximize the
log-likelihood of our dataset:

L(0|X) = p(X|0) = p(Xy, ...X,|0) g119()(1|9)I9(X2|9) . p(Xy|0) = HP(Xn|9)
n=1

N N
0 = arg mglx(log p(X|0)) = arg max logl_[p(xn|9) = arg max z logp(x,]0)
n=1 n=1
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MLE for a biased coin: example

" Estimate the probability 8 of landing in heads using a biased coin
" Given a sequence of N independently and identically distributed (iid) flips

= eg. X = {x{,..,Xy} =1{1,0,1,...,0}, x € {0,1}

= Model: p(x]0) = 0*(1 — 9)1™*
(

1—6,forx =20
p(x]6) = 18, forx =1
" Likelihood of a single observation x,,?

L(O|xn) = p(x,16) = 07n(1 — 6)* ™

CS4641B Machine Learning | Fall 2020
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MLE for a biased coin

= (QObjective function, log-likelihood
N
1(6]X) = log L(0]X) = logl_[ 6%n(1 — §)1~*n = log(oVH (1 — O)NT)
n=1

Ny = number of heads, Ny = number of tails

= Maximize [(8]X) w.r.t. 8 — take derivative w.r.t. 8 and set it to zero

al(B1X) Ny N — Ny N,

90 5 1-pg 07 %mr =

" Example: Ny =78, Ny =22-0 =0.78

CS4641B Machine Learning | Fall 2020

16



Outline

" Nonparametric density estimation
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One-dimensional histogram

"  (One of the simplest nonparametric density estimator
=  Given N iid samples X = {xq,%5, ..., Xy}, X;, € [min x, max x)
= Split the parameter space into M bins:

(max x — min x)

bin width = A =
in wi v

bin, = [minx, minx + A), ..., biny; = [minx + (M — 1)A, max x)

" Count the number of points x,, that belong in each bin; =n;

= [For anew test point x
n; number of points in bin;

Pi = NA; total number of data points X bin; width
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One-dimensional histogram

" The probability mass function is given by:

p n; number of points in bin;
‘N total number of data points

= We know that the probability mass function is given by:

P = fR p(x) dx

= Assuming that the probability is evenly distributed inside each bin region:

Pi:f p; dx — P; = p; X A;
R.

l

" Then, the probability density function is given by

n; number of points in bin;

Pi = NA; " total number of data points X bin; width

= Which satisfies p(x) =0, [ p(x)dx = 1

CS4641B Machine Learning | Fall 2020
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Example: histogram prob. mass function
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Higher-dimensional histogram
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Horrible visualization,

T / don’t ever use it!
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Histogram results depend on where you
place the bins

Histogram with breaks at n.0 and n.5 Histogram with breaks at n.25 and n.73
binwidth=0.5 binwidth=0.5
v - O —
L P
T = T -
= -,
:
"é_ e — 5, o -
o — o] —
0.5
< = - +- . < = - -
I | [ | | I I I I
1 2 3 4 5 1 2 3 4
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Histogram results depend on the bin width

: A = 0.04 |
OA.f-_——ﬁ:h..___aéﬂ

0 0.5 1

5 .
A =0.08 \
0

0 0.5 1
A = 0.25 |

0_“

0 0.5 1

Image credit: Bishop (PRML), 2006
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Limitations of histogram

" Scaling with dimensionality > curse of dimensionality
" For a dataset, where each point is a D-dimensional vector, splitting each feature
space in M bins, will lead to a total of MP bins
= Discontinuities that are not associated with how the data is generated

How is it useful then?

= Visualization
" Provides us with the following intuitions:
" Estimating the probability density at a particular location should consider the data
points within a region
* We should be careful about how we smooth the space (should not be too small
neither too large)

CS4641B Machine Learning | Fall 2020
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Kernel density estimation

= Kernel function for a hyper-cube of size u

1
k(u) = 1, Jugl < E'd =1,..,D

0, otherwise

» Total number of data points lying inside the cube centered on x,,

N
X — X,
K =
2 k(=)
n=1

()_1§: 1 k(x—xn)
PR =N Lo\ h
n=1

= Still suffering from discontinuities = need a smoother kernel

" Estimated density at X

CS4641B Machine Learning | Fall 2020
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Kernel density estimation

" Gaussian smoothing kernel

N
_1 1 lIx — Xallz
p(X) QGXIZH 2 h2 (

n=1(2mh?)?2 . /

= What does this mean? Placing the Gaussian over each data point and summing up their
contributions over the whole data set

r'y

1 v 1 (x — x,,)?
p(x) U ;h am L 2k
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Kernel density estimation: example

0.045¢

0.04+
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Visual example with Gaussian kernel
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Kernel Density Estimation

" \We can choose any other kernel as long as it satisfies the following conditions:

k(u) >0
fk(u)du =1

k(—u) = k(u)

" \What about the training? Well, there isn’t one. We have to store the entire dataset
and compute the probability of x = large computational cost

CS4641B Machine Learning | Fall 2020
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Smoothmg kernel functlons (1D)

gaussmn tophat epanechn[kov | k(u) — E(l . uZ)

/ Support: lu| <1
ex;;cmerrwtiali | | Iinéar | 1 | | coéine |

k(u) = %cos (g u)

// Support: |u] <1
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Effect of the Kernel Bandwidth
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Choosing the kernel bandwidth

= Silverman’s rule of thumb: if using the Gaussian kernel, a good choice for h is:

1
1

4 5 1
h = (B—N65> = 1.066N 5

Where & is the standard deviation and N is the number of datapoints

" Better (more computationally intensive approach)
= Randomly split the data into two sets
" Obtain a kernel density estimate for the first
" Measure the likelihood of the second set
= Repeat over many random splits and average
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Two-dimensional examples

" From left to right: the true distribution from which 100 data points were sampled, the
estimate using the Silverman’s rule and using a modification with the parameter A
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https://en.wikipedia.org/wiki/Kernel_density_estimation#A_rule-of-thumb_bandwidth_estimator

Parametric vs honparametric
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