
The week ahead
▪ Quiz 5: mean is 81% and average completion time 5min 40sec!

▪ Touch-point 1 deliverables due tonight at 11:59pm
▪ Three-min video + one-slide presentation → Piazza thread

▪ Touch-point 1, Wed Sep 30th during class time
▪ Everyone should watch the pitch videos from the teams in their own cluster and be prepared to

give feedback/ask questions

▪ Quiz 6, Friday, Oct 2nd 6am until Oct 3rd 11:59am (noon)
▪ Density estimation

▪ Project proposal due Oct 2nd 11:59pm (midnight)
▪ Link to GitHub page + pdf printout of your webpage → Gradescope

▪ Assignment 2 due Oct 5th 11:59pm (midnight)
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Adopted from slides from Le Song and Mahdi Roozbahani

CS4641B Machine Learning

Lecture 12: Density estimation
Rodrigo Borela ‣ rborelav@gatech.edu



Outline
▪ Overview
▪ Parametric density estimation
▪ Nonparametric density estimation

▪ Complementary reading: Bishop PRML – Chapter 2, Parametric methods Sections 2.1 
through 2.4 and Nonparametric methods Section 2.5 through 2.5.2
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Outline
▪ Overview
▪ Parametric density estimation
▪ Nonparametric density estimation
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▪ Learn more about the “shape” of the data cloud

▪ Access the density of seeing a particular data point
▪ Is this a typical data point? (high density value)
▪ Is this an abnormal data point/outlier? (low density value)

▪ Building block for more sophisticated learning algorithms
▪ Classification, regression, graphical models
▪ A simple recommendation system

Why density estimation?
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Why density estimation?
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Histogram is an estimate of the probability distribution of a continuous variable

Example: test scores
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Example: test scores
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Parametric density estimation
▪ Model which can be described by a fixed number of parameters

▪ Discrete case: e.g. Bernoulli distribution
𝑝 𝑥 𝜃 = 𝜃𝑥 1 − 𝜃 1−𝑥

one parameter 𝜃 (probability of possible outcome), 𝜃 ∈ 0,1 , which generates a family of 
models ℱ = 𝑝 𝑥 𝜃 | 𝜃 ∈ 0,1

▪ Continuous case: e.g. Gaussian distribution in ℝ𝐷

𝑝 𝐱|𝝁, 𝚺 =
1

2𝜋
𝐷
2 𝚺

1
2

exp −
1

2
𝐱 − 𝛍 T𝚺−𝟏 𝐱 − 𝛍

two sets of parameters {𝝁, 𝚺}, which again generate a family of models

ℱ = 𝑝 𝐱|𝝁, 𝚺 | 𝝁 ∈ ℝ𝐷, 𝚺 ∈ ℝ𝐷×𝐷, 0,1
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Nonparametric density estimation
▪ What are nonparametric models?

▪ “Nonparametric” does not mean there are no parameters
▪ Can not be described by a fixed number of parameters
▪ One can think there are many parameters

▪ Examples: histogram and kernel density estimator

Histogram Kernel density estimator
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Parametric vs. nonparametric density estimation

Parametric Nonparametric



Parametric vs. nonparametric density estimation
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Parametric Nonparametric



Outline
▪ Overview
▪ Parametric density estimation
▪ Nonparametric density estimation
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Estimating parametric models
▪ A very popular estimator is the maximum likelihood estimator (MLE), which is simple 

and has good statistical properties

▪ Assume that we have 𝑁 data points 𝐗 = {𝐱1, … , 𝐱𝑁} drawn independently and 
identically (iid) from some distribution 𝑝∗(𝐱)

▪ Want to fit the data with a model 𝑝 𝐱|𝜽 with parameter 𝜽, we want to maximize the 
log-likelihood of our dataset:

𝐿 𝜽|𝐗 = 𝑝 𝐗 𝜽) = 𝑝 𝐱1, … 𝐱𝑛|𝜽
𝑖𝑖𝑑
𝑝 𝐱1|𝜽 𝑝 𝐱2|𝜽 …𝑝 𝐱𝑁|𝜽 =ෑ

𝑛=1

𝑁

𝑝 𝐱𝑛|𝜽

𝜽 = argmax
𝜽

log 𝑝 𝐗 𝜽) = argmax
𝜽

logෑ

𝑛=1

𝑁

𝑝 𝐱𝑛|𝜽 = argmax
𝜽

෍

𝑛=1

𝑁

log 𝑝 𝐱𝑛|𝜽
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MLE for a biased coin: example
▪ Estimate the probability 𝜃 of landing in heads using a biased coin
▪ Given a sequence of 𝑁 independently and identically distributed (iid) flips

▪ e.g. 𝐗 = 𝐱1, … , 𝐱𝑁 = 1,0,1, … , 0 , 𝑥 ∈ 0,1

▪ Model: 𝑝 𝑥 𝜃 = 𝜃𝑥 1 − 𝜃 1−𝑥

𝑝 𝑥 𝜃 = ቊ
1 − 𝜃, for 𝑥 = 0
𝜃, for 𝑥 = 1

▪ Likelihood of a single observation 𝑥𝑛?
𝐿 𝜃|𝑥𝑛 = 𝑝 𝑥𝑛 𝜃 = 𝜃𝑥𝑛 1 − 𝜃 1−𝑥𝑛
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MLE for a biased coin
▪ Objective function, log-likelihood

𝑙 𝜃 𝐗 = log 𝐿 𝜃 𝐗 = logෑ

𝑛=1

𝑁

𝜃𝑥𝑛 1 − 𝜃 1−𝑥𝑛 = log 𝜃𝑁𝐻 1 − 𝜃 𝑁𝑇

= 𝑁𝐻 × log 𝜃 + 𝑁𝑇 × log 1 − 𝜃

𝑁𝐻 = number of heads, 𝑁𝑇 = number of tails

▪ Maximize 𝑙 𝜃 𝐗 w.r.t. 𝜃 → take derivative w.r.t. 𝜃 and set it to zero

𝜕𝑙 𝜃 𝐗

𝜕𝜃
=
𝑁𝐻
𝜃
−
𝑁 − 𝑁𝐻
1 − 𝜃

= 0 → 𝜃𝑀𝐿𝐸 =
𝑁𝐻
𝑁

▪ Example: 𝑁𝐻 = 78, 𝑁𝐻 = 22 → 𝜃 = 0.78

CS4641B Machine Learning | Fall 2020 16



Outline
▪ Overview
▪ Parametric density estimation
▪ Nonparametric density estimation
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One-dimensional histogram
▪ One of the simplest nonparametric density estimator
▪ Given 𝑁 iid samples 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑁 , 𝑥𝑛 ∈ min 𝑥 ,max 𝑥
▪ Split the parameter space into 𝑀 bins:

𝑏𝑖𝑛 𝑤𝑖𝑑𝑡ℎ = Δ =
max 𝑥 −min 𝑥

𝑀

𝑏𝑖𝑛1 = min 𝑥 ,min 𝑥 + Δ ,… , 𝑏𝑖𝑛𝑀 = min 𝑥 + 𝑀 − 1 Δ,max 𝑥

▪ Count the number of points 𝑥𝑛 that belong in each 𝑏𝑖𝑛𝑖 = 𝑛𝑖

▪ For a new test point x

𝑝𝑖 =
𝑛𝑖
𝑁Δ𝑖

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑏𝑖𝑛𝑖

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 × 𝑏𝑖𝑛𝑖 𝑤𝑖𝑑𝑡ℎ
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One-dimensional histogram
▪ The probability mass function is given by:

𝑃𝑖 =
𝑛𝑖
𝑁
=

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑏𝑖𝑛𝑖
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠

▪ We know that the probability mass function is given by:

𝑃 = න
ℛ

𝑝(𝑥) 𝑑𝑥

▪ Assuming that the probability is evenly distributed inside each bin region:

𝑃𝑖 = න
ℛ𝑖

𝑝𝑖 𝑑𝑥 → 𝑃𝑖 = 𝑝𝑖 × Δ𝑖

▪ Then, the probability density function is given by

𝑝𝑖 =
𝑛𝑖
𝑁Δ𝑖

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑏𝑖𝑛𝑖

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 × 𝑏𝑖𝑛𝑖 𝑤𝑖𝑑𝑡ℎ

▪ Which satisfies 𝑝 𝑥 ≥ 𝑝׬ ,0 𝑥 𝑑𝑥 = 1
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Example: histogram prob. mass function
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Higher-dimensional histogram

Horrible visualization, 
don’t ever use it!
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0.5

Histogram results depend on where you 
place the bins
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Histogram results depend on the bin width
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Image credit: Bishop (PRML), 2006



Limitations of histogram
▪ Scaling with dimensionality > curse of dimensionality

▪ For a dataset, where each point is a 𝐷-dimensional vector, splitting each feature 
space in 𝑀 bins, will lead to a total of 𝑀𝐷 bins

▪ Discontinuities that are not associated with how the data is generated

▪ Visualization
▪ Provides us with the following intuitions:

▪ Estimating the probability density at a particular location should consider the data 
points within a region

▪ We should be careful about how we smooth the space (should not be too small
neither too large)

How is it useful then?
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Kernel density estimation
▪ Kernel function for a hyper-cube of size 𝐮

𝑘 𝐮 = ቐ1, 𝑢𝑑 ≤
1

2
, 𝑑 = 1,… , 𝐷

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

▪ Total number of data points lying inside the cube centered on 𝐱𝑛

𝐾 = ෍

𝑛=1

𝑁

𝑘
𝐱 − 𝐱𝑛
ℎ

▪ Estimated density at 𝐱

𝑝 𝐱 =
1

𝑁
෍

𝑛=1

𝑁
1

ℎ𝐷
𝑘

𝐱 − 𝐱𝑛
ℎ

▪ Still suffering from discontinuities → need a smoother kernel
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Kernel density estimation
▪ Gaussian smoothing kernel

𝑝 𝑥 =
1

𝑁
෍

𝑛=1

𝑁
1

2𝜋ℎ2
𝐷
2

exp
𝐱 − 𝐱𝑛 2

2

2ℎ2

▪ What does this mean? Placing the Gaussian over each data point and summing up their 
contributions over the whole data set
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𝑝 𝑥 =
1

𝑁
෍

𝑛=1

𝑁
1

ℎ 2𝜋
exp

𝑥 − 𝑥𝑛
2

2ℎ2
𝑝 𝑥

𝑥



Kernel density estimation: example
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𝑝 𝑥 =
1

𝑁
෍

𝑛=1

𝑁
1

ℎ 2𝜋
exp

𝑥 − 𝑥𝑛
2

2ℎ2
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Visual example with Gaussian kernel



Kernel Density Estimation
▪ We can choose any other kernel as long as it satisfies the following conditions:

𝑘 𝐮 ≥ 0

න𝑘 𝐮 𝑑𝐮 = 1

𝑘 −𝐮 = 𝑘 𝐮

▪ What about the training? Well, there isn’t one. We have to store the entire dataset 
and compute the probability of x → large computational cost
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Smoothing kernel functions (1D)
𝑘 𝑢 =

3

4
1 − 𝑢2

Support: 𝑢 ≤ 1

𝑘 𝑢 =
𝜋

4
cos

𝜋

2
𝑢

Support: 𝑢 ≤ 1
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Effect of the Kernel Bandwidth
𝑝 𝑥 =

1

𝑁
෍

𝑛=1

𝑁
1

ℎ 2𝜋
exp

𝑥 − 𝑥𝑛
2

2ℎ2
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Choosing the kernel bandwidth
▪ Silverman’s rule of thumb: if using the Gaussian kernel, a good choice for ℎ is:

ℎ =
4

3𝑁
ො𝜎5

1
5

= 1.06 ො𝜎𝑁−
1
5

Where ො𝜎 is the standard deviation and N is the number of datapoints

▪ Better (more computationally intensive approach)
▪ Randomly split the data into two sets
▪ Obtain a kernel density estimate for the first
▪ Measure the likelihood of the second set
▪ Repeat over many random splits and average
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Two-dimensional examples
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▪ From left to right: the true distribution from which 100 data points were sampled, the 
estimate using the Silverman’s rule and using a modification with the parameter A

https://en.wikipedia.org/wiki/Kernel_density_estimation#A_rule-of-thumb_bandwidth_estimator


Parametric vs nonparametric
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