The week ahead

- **Quiz 5:** mean is 81% and average completion time 5min 40sec!
- Touch-point 1 deliverables due tonight at 11:59pm
 - Three-min video + one-slide presentation \rightarrow Piazza thread
- Touch-point 1, Wed Sep 30th during class time
 - Everyone should watch the pitch videos from the teams in their own cluster and be prepared to give feedback/ask questions
- Quiz 6, Friday, Oct 2nd 6am until Oct 3rd 11:59am (noon)
 - Density estimation
- Project proposal due Oct 2nd 11:59pm (midnight)
 - Link to GitHub page + pdf printout of your webpage \rightarrow Gradescope
- Assignment 2 due Oct 5th 11:59pm (midnight)

CS4641B Machine Learning Lecture 12: Density estimation

Rodrigo Borela ► rborelav@gatech.edu

Adopted from slides from Le Song and Mahdi Roozbahani

Outline

- Overview
- Parametric density estimation
- Nonparametric density estimation

Complementary reading: Bishop PRML – Chapter 2, Parametric methods Sections 2.1 through 2.4 and Nonparametric methods Section 2.5 through 2.5.2

Outline

- Overview
- Parametric density estimation
- Nonparametric density estimation

Why density estimation?

Learn more about the "shape" of the data cloud

- Access the density of seeing a particular data point
 - Is this a typical data point? (high density value)
 - Is this an abnormal data point/outlier? (low density value)
- Building block for more sophisticated learning algorithms
 - Classification, regression, graphical models
 - A simple recommendation system

Why density estimation?

CS4641B Machine Learning | Fall 2020

6

Example: test scores

Histogram is an estimate of the probability distribution of a continuous variable

Example: test scores

+

Parametric density estimation

- Model which can be described by a fixed number of parameters
- **Discrete case:** e.g. Bernoulli distribution $p(x|\theta) = \theta^{x}(1-\theta)^{1-x}$

one parameter θ (probability of possible outcome), $\theta \in [0,1]$, which generates a family of models $\mathcal{F} = \{p(x|\theta) | \theta \in [0,1]\}$

Continuous case: e.g. Gaussian distribution in \mathbb{R}^D $p(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{\frac{D}{2}}|\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}\right\}$

two sets of parameters $\{\mu, \Sigma\}$, which again generate a family of models $\mathcal{F} = \left\{ p(\mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) | \boldsymbol{\mu} \in \mathbb{R}^{D}, \boldsymbol{\Sigma} \in \mathbb{R}^{D \times D}, \{0, 1\} \right\}$

$$\left\{ -1(\mathbf{x}-\mathbf{\mu})\right\}$$

Nonparametric density estimation

- What are nonparametric models?
 - "Nonparametric" does not mean there are no parameters
 - Can not be described by a fixed number of parameters
 - One can think there are many parameters
- Examples: histogram and kernel density estimator

Kernel density estimator

Parametric vs. nonparametric density estimation

Parametric

Nonparametric

Parametric vs. nonparametric density estimation

Parametric

Nonparametric

Outline

- Overview
- Parametric density estimation
- Nonparametric density estimation

Estimating parametric models

- A very popular estimator is the maximum likelihood estimator (MLE), which is simple and has good statistical properties
- Assume that we have N data points $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ drawn independently and identically (iid) from some distribution $p^*(\mathbf{x})$
- Want to fit the data with a model $p(\mathbf{x}|\boldsymbol{\theta})$ with parameter $\boldsymbol{\theta}$, we want to maximize the log-likelihood of our dataset:

$$L(\boldsymbol{\theta}|\mathbf{X}) = p(\mathbf{X}|\boldsymbol{\theta}) = p(\mathbf{x}_1, \dots, \mathbf{x}_n|\boldsymbol{\theta}) \stackrel{iid}{\Rightarrow} p(\mathbf{x}_1|\boldsymbol{\theta})p(\mathbf{x}_2|\boldsymbol{\theta}) \dots$$

$$\boldsymbol{\theta} = \arg \max_{\boldsymbol{\theta}} (\log p(\mathbf{X}|\boldsymbol{\theta})) = \arg \max_{\boldsymbol{\theta}} \left(\log \prod_{n=1}^{N} p(\mathbf{x}_n|\boldsymbol{\theta}) \right) = \arg \max_{\boldsymbol{\theta}} \left(\sum_{n=1}^{N} \log p(\mathbf{x}_n|\boldsymbol{\theta}) \right)$$

$$p(\mathbf{x}_N|\boldsymbol{\theta}) = \prod_{n=1}^N p(\mathbf{x}_n|\boldsymbol{\theta})$$

MLE for a biased coin: example

- Estimate the probability θ of landing in heads using a biased coin
- Given a sequence of N independently and identically distributed (iid) flips
 - e.g. $\mathbf{X} = {\mathbf{x}_1, \dots, \mathbf{x}_N} = {1,0,1,\dots,0}, x \in {0,1}$
- Model: $p(x|\theta) = \theta^{x}(1-\theta)^{1-x}$

$$p(x|\theta) = \begin{cases} 1 - \theta, \text{ for } x = 0\\ \theta, & \text{ for } x = 1 \end{cases}$$

Likelihood of a single observation x_n ? $L(\theta|x_n) = p(x_n|\theta) = \theta^{x_n}(1-\theta)^{1-x_n}$

MLE for a biased coin

Objective function, log-likelihood

$$l(\theta | \mathbf{X}) = \log L(\theta | \mathbf{X}) = \log \prod_{n=1}^{N} \theta^{x_n} (1 - \theta)^{1 - x_n} = 1$$
$$= N_H \times \log \theta + N_T \times \log(1 - \theta)$$
$$N_H = \text{number of heads}, N_T = \text{number}$$

• Maximize $l(\theta | \mathbf{X})$ w.r.t. $\theta \rightarrow$ take derivative w.r.t. θ and set it to zero

$$\frac{\partial l(\theta | \mathbf{X})}{\partial \theta} = \frac{N_H}{\theta} - \frac{N - N_H}{1 - \theta} = 0 \to \theta_{MLE}$$

• Example: $N_H = 78$, $N_H = 22 \rightarrow \theta = 0.78$

$\log(\theta^{N_H}(1-\theta)^{N_T})$

)

of tails

$$=\frac{N_H}{N}$$

Outline

- Overview
- Parametric density estimation
- Nonparametric density estimation

One-dimensional histogram

- One of the simplest nonparametric density estimator
- Given N iid samples $X = \{x_1, x_2, \dots, x_N\}, x_n \in [\min x, \max x)$
- Split the parameter space into *M* bins:

$$bin width = \Delta = \frac{(\max x - \min x)}{M}$$

 $bin_1 = [\min x, \min x + \Delta), \dots, bin_M = [\min x + (M - 1)\Delta, \max x)]$

- Count the number of points x_n that belong in each $bin_i = n_i$
- For a new test point x

$$p_i = \frac{n_i}{N\Delta_i} = \frac{number \ of \ points \ in}{total \ number \ of \ data \ points}$$

χ)

bin_i $\times bin_i$ width

One-dimensional histogram

The probability mass function is given by:

 $P_{i} = \frac{n_{i}}{N} = \frac{number \ of \ points \ in \ bin_{i}}{total \ number \ of \ data \ points}$

We know that the probability mass function is given by:

$$P = \int_{\mathcal{R}} p(x) \, dx$$

Assuming that the probability is evenly distributed inside each bin region:

$$P_i = \int_{\mathcal{R}_i} p_i \, dx \to P_i = p_i \times \Delta_i$$

Then, the probability density function is given by

 $p_{i} = \frac{n_{i}}{N\Delta_{i}} = \frac{number \ of \ points \ in \ bin_{i}}{total \ number \ of \ data \ points \ \times bin_{i} \ width}$

Which satisfies $p(x) \ge 0$, $\int p(x) dx = 1$

Example: histogram prob. mass function

Higher-dimensional histogram

Horrible visualization, don't ever use it!

Histogram results depend on where you place the bins

Histogram results depend on the bin width

Image credit: Bishop (PRML), 2006

Limitations of histogram

- Scaling with dimensionality > curse of dimensionality
 - For a dataset, where each point is a *D*-dimensional vector, splitting each feature space in M bins, will lead to a total of M^D bins
- Discontinuities that are not associated with how the data is generated

How is it useful then?

- Visualization
- Provides us with the following intuitions:
 - Estimating the probability density at a particular location should consider the data points within a region
 - We should be careful about how we smooth the space (should not be too small neither too large)

Kernel density estimation

Kernel function for a hyper-cube of size **u**

$$k(\mathbf{u}) = \begin{cases} 1, |u_d| \le \frac{1}{2}, d = 1, \dots, \\ 0, & otherwis \end{cases}$$

Total number of data points lying inside the cube centered on \mathbf{x}_n

$$K = \sum_{n=1}^{N} k \left(\frac{\mathbf{x} - \mathbf{x}_n}{h} \right)$$

Estimated density at **x**

$$p(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{h^{D}} k\left(\frac{\mathbf{x} - \mathbf{x}_{n}}{h}\right)$$

Still suffering from discontinuities \rightarrow need a smoother kernel

CS4641B Machine Learning | Fall 2020

D e

Kernel density estimation

Gaussian smoothing kernel

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(2\pi h^2)^{\frac{D}{2}}} \exp\left\{\frac{\|\mathbf{x} - \mathbf{x}\|}{2h^2}\right\}$$

 What does this mean? Placing the Gaussian over each data point and summing up their contributions over the whole data set

 $\left\{\frac{n \|_2^2}{2}\right\}$

 $p(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{h\sqrt{(2\pi)}} \exp\left\{\frac{(x-x_n)^2}{2h^2}\right\}$

Kernel density estimation: example

estimate $p(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{h\sqrt{(2\pi)}} \exp\left\{\frac{(x-x_n)^2}{2h^2}\right\}$

Visual example with Gaussian kernel

Kernel Density Estimation

We can choose any other kernel as long as it satisfies the following conditions:

$$k(\mathbf{u}) \ge 0$$
$$\int k(\mathbf{u})d\mathbf{u} = 1$$
$$k(-\mathbf{u}) = k(\mathbf{u})$$

What about the training? Well, there isn't one. We have to store the entire dataset and compute the probability of $x \rightarrow$ large computational cost

Smoothing kernel functions (1D)

Effect of the Kernel Bandwidth

 $p(x) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{h\sqrt{(2\pi)}} \exp\left\{\frac{(x-x_n)^2}{2h^2}\right\}$

Choosing the kernel bandwidth

Silverman's rule of thumb: if using the Gaussian kernel, a good choice for h is:

$$h = \left(\frac{4}{3N}\hat{\sigma}^5\right)^{\frac{1}{5}} = 1.06\hat{\sigma}N^{-\frac{1}{5}}$$

Where $\hat{\sigma}$ is the standard deviation and N is the number of datapoints

- Better (more computationally intensive approach)
 - Randomly split the data into two sets
 - Obtain a kernel density estimate for the first
 - Measure the likelihood of the second set
 - Repeat over many random splits and average

Two-dimensional examples

From left to right: the true distribution from which 100 data points were sampled, the estimate using the Silverman's rule and using a modification with the parameter A

CS4641B Machine Learning | Fall 2020

Parametric vs nonparametric