The week ahead

- Quiz 4: mean is 85% and average completion time 5min 40sec!
- Assignment 2 Early bird special \rightarrow 1 complete programming question by Wed, Sep 23rd
- **EXTEREM** Fifth round of project seminars, available Thursday, Sep 24th
- \blacksquare HW1 grades are out! Regrade requests by Fri, Sep 25th
- Open office hours on Thursday, 7pm to 8pm
	- <https://primetime.bluejeans.com/a2m/live-event/qfsqxjec>
- Quiz 5, Friday, Sep 25th 6am until Sep 26th 11:59am (noon)
	- Hierarchical clustering, cluster evaluation, density estimation

CS4641B Machine Learning | Fall 2020 1

Coming up soon

- Touch-point 1: deliverables due Mon, Sep 28th, live-event Wed, Sep 30th
- Project proposal due Oct 2nd 11:59pm (midnight)
- Assignment 2 due Oct 5th 11:59pm (midnight)

These slides are based on slides from Mohammed Zaki, Chao Zhang, Jiawei Han and Mahdi Roozbahani

CS4641B Machine Learning Lecture 10: Clustering evaluation

Rodrigo Borela • rborelav@gatech.edu

Clustering Evaluation

- Clustering evaluation aims at quantifying the goodness or quality of the clustering.
- Two main categories of measures:
	- **External measures:** employ external ground-truth
	- **Internal measures:** derive goodness from the data itself

Outline

- **External measures for clustering evaluation**
	- Matching-based measures
	- Entropy-based measures
	- Pairwise measures
- **E** Internal measures for clustering evaluation
	- Graph-based measures
	- Davies-Bouldin Index
	- Silhouette Coefficient

Outline

- **External measures for clustering evaluation**
	- Matching-based measures
	- **Entropy-based measures**
	- **Pairwise measures**
- Internal measures for clustering evaluation
	- Graph-based measures
	- Davies-Bouldin Index
	- **E** Silhouette Coefficient

External measures

- External measures assume that the correct or ground-truth clustering is known a priori, which is used to evaluate a given clustering
- **•** Let $X = {x_n}_{n=1}^N$ be a dataset consisting of N points in a D-dimensional space, partitioned into K clusters. Let $y_n \in \{1,2,...,K\}$ denote the ground-truth cluster membership or label information for each point
- **•** The ground-truth clustering is given as $\mathcal{T} = \{T_1, T_2, ..., T_K\}$, where the cluster T_k consists of all the points with label k, i.e. $T_k = {\mathbf{x}_n \in \mathbf{X} | y_n = k}$. We refer to T as the ground-truth *partitioning*, and to each T_k as a *partition*.
- **•** Let $C = \{C_1, C_2, ..., C_R\}$ denote a clustering of the same dataset into R clusters, obtained via some clustering algorithm, and let $\hat{y}_n \in \{1,2,...,R\}$ denote the cluster label for \mathbf{x}_n .
- So K is the number of ground-truth partitions (T) and R is the number of clusters (C) obtained by algorithm
- n_{rk} = Number of data points in cluster r which are also in ground-truth partition k

• Purity: Quantifies the extent that cluster C_i contains points only from one (ground truth) partition.

Matching-based measures: Purity

$$
\max(2,0,7) = \frac{7}{9}
$$

- **•** The total purity of clustering C is the weighted sum of the cluster-wise purity:
- What is purity value for a perfect clustering? $purity = 1$

$$
\frac{n_r}{N} \text{purity}_r = \frac{1}{N} \sum_{r=1}^{R} \max_{k=1} \{n_{rk}\}
$$

 $r=1$

 \overline{R}

 $purity =$

$$
= \frac{1}{n_r} \max_{k=1}^{K} \{n_{rk}\}
$$

 $\max(n_{31}, n_{32}, n_{33})$

purity. $purity₂$ $purity_3 = 25/25$

 $purity =$

$$
_{1} = 30/50
$$

 $_{2} = 20/25$
 $_{3} = 25/25$

$$
\frac{30 + 20 + 25}{100} = 0.75
$$

$$
purity_r = \frac{1}{n_r} \max_{k=1}^{K} \{n_{rk}\} \qquad \qquad purity = \sum_{r=1}^{R} \frac{n_r}{N} \text{purity}_r = \frac{1}{N} \sum_{r=1}^{R} \max_{k=1}^{K} \{n_{rk}\}
$$

$$
purity_r = \frac{1}{n_r} \max_{k=1}^{K} \{n_{rk}\}
$$

Purity: example

 $= 0.75$ purity

100

$$
\frac{+20+25}{100} = 0.75
$$

CS4641B Machine Learning | Fall 2020 9

C_1 is more paired with T_2 C_2 is more paired with T_2

Purity: example

 $purity =$

■ Two clusters may be matched to the same partition

nple: x imum matching = 0.65 > 0.6

- **Drawback of purity:** two clusters may be matched to the same partition.
- **I** Maximum matching: the maximum purity under the one-to-one matching constraint.
	- Examine all possible pairwise matching between C and T and choose the best (the maximum)

Matching-based measures: Maximum matching

 C_1 is more paired with T_2 , $purity =$

 C_1 is more paired with T_3 , purity =

Purity: example

- Maximum weight matching: Only one cluster can match one partition
	- **Example:** If C_1 is more paired with T_2 THEN C_2 and C_3 cannot paired with T_2

CS4641B Machine Learning | Fall 2020 12

Precision, accuracy and recall

Correct prediction

False positive is also called false alarm

CS4641B Machine Learning | Fall 2020 13

Precision, accuracy and recall

- **E** Number of predicted "positive" labeled data = True Positive $+$ False Positive
- **E** Number of predicted "negative" labeled data $=$ True Negative $+$ False Negative

$$
Precision = \frac{True \ Positive}{Predicted \ Results} = \frac{True \ Positive}{True \ Positive + False \ Positive}
$$
\n
$$
Recall = \frac{True \ Positive \ True \ Positive}{Actual \ Results} = \frac{True \ Positive}{True \ Positive + False \ Negative}
$$
\n
$$
Accuracy = \frac{True \ Positive + True \ Negative}{Total}
$$

$$
precision_r = \frac{1}{n_r} \max_{k=1}^{K} \{n_{rk}\} = \frac{n_{rk_r}}{n_r}
$$

- Recall: measures completeness
	- How completely does each cluster recover the ground truth? $recall_{r}=% \begin{bmatrix} \omega_{r}(\vec{r}) & \omega_{r}(\vec{r}) \end{bmatrix} \label{eq:rec}$ n_{rk} $T_{k,r}$ = n_{rk} $m_{k_{r}}$

The fraction of point in partition T_k shared with cluster C_r

Example:
$$
prec_1 = \frac{6}{6}
$$
 $recall_1 = \frac{6}{10}$

Matching-based measures: F-measure

- **Precision:** which measures quality, is the same as purity:
	- How precisely does each cluster represent the ground truth?

Precision: $prec_1 = 30/50$ $prec_2 = 20/25$ $prec_3 = 25/25$

Recall: $recall_1 = 30/35$ $recall_2 = 20/40$ $recall_3 = 25/25$

(Precision here is same as the purity)

[Precision and recall](https://en.wikipedia.org/wiki/Precision_and_recall)

Example:
\n
$$
F_1 = \frac{2 \times 30}{35 + 50} = \frac{60}{85}
$$
 $F_2 = \frac{2 \times 20}{40 + 25} = \frac{40}{65}$ $F_3 = \frac{2 \times 25}{25 + 25} = 1$
\n $F = 0.774$

= $2 \times n_{rk_r}$ $n_r + m_{k,r}$

$$
F_r = \frac{2}{\frac{1}{prec_r} + \frac{1}{recall_r}} = \frac{2 \times prec_r \times recall_r}{prec_r + recall_r}
$$

The F-measure for the clustering C is the mean of clusterwise F-measure values $F =$ 1 \overline{R} $\left\langle \right\rangle$ $r=1$ \overline{R} F_r

Matching-based measures: F-measure

- F-Measure: the harmonic mean of precision and recall
	- Take into account both precision and completeness

Outline

- **External measures for clustering evaluation**
	- Matching-based measures
	- Entropy-based measures
	- **Pairwise measures**
- Internal measures for clustering evaluation
	- **■** Graph-based measures
	- Davies-Bouldin Index
	- **E** Silhouette Coefficient

$$
H(\mathcal{C}) = -\sum_{r=1}^{R} p_{C_r} \log_2 p_{C_r} \qquad H(\mathcal{T}) = -\sum_{k=1}^{K} p_{T_k} \log_2 p_{T_k}
$$

where $p_{C_r} =$ n_r \boldsymbol{N} $(n_r:$ row-wise summation, i.e. the probability of cluster C_r , $n_r = n_{r1} + \cdots + n_{rK}$) and $p_{T_k} =$ m_{k} \boldsymbol{N} $(m_k:$ column-wise summation, i.e. the probability of cluster T_k)

• Conditional Entropy: The cluster-specific entropy, namely the conditional entropy of T with respect to cluster $\mathcal{C}_{\bm r}$:

$$
H(\mathcal{T}|C_r) = -\sum_{k=1}^{K} \left(\frac{n_{rk}}{n_r}\right) \log \left(\frac{n}{n_r}\right)
$$

How ground truth is distributed within each cluster

Entropy-based measures: Conditional entropy

- Amount of information orderness in different partitions
- **•** The entropy for clustering C and partition T is:

$$
H(\mathcal{T}|\mathcal{C}) = \sum_{r=1}^{R} \frac{n_r}{N} H(\mathcal{T}|C_r) = -\sum_{r=1}^{R} \sum_{k=1}^{K}
$$

$$
= H(\mathcal{C}, \mathcal{T}) - H(\mathcal{C})
$$

- The more clusters members are split into different partitions, the higher the conditional entropy (not a desirable condition and the max value is $log_2 K$)
- \blacksquare $H(\mathcal{T}|\mathcal{C}) = 0$ if and only if $\mathcal T$ is completely determined by $\mathcal C$, corresponding to the ideal clustering. If C and T are independent of each other, then $H(\mathcal{T}|\mathcal{C}) = H(\mathcal{T})$.
- **•** Refresher: $H(Y|X) = \sum_{x \in X} p(x)H(Y|X=x)$, $H(Y|X) = H(X,Y) H(X)$

Entropy-based measures: Conditional entropy

The conditional entropy of T given clustering C is defined as the weighted sum:

$$
H(\mathcal{T}|\mathcal{C}) = -\sum_{r=1}^{R} \sum_{k=1}^{K} p_{rk} \log \frac{p_{rk}}{p_{C_r}} = -\sum_{r=1}^{R} \sum_{k=1}^{K} p_{rk} (\log p_{rk})
$$

=
$$
-\sum_{r=1}^{R} \sum_{k=1}^{K} p_{rk} (\log p_{rk}) + \sum_{r=1}^{R} (\log p_{C_r} \sum_{k=1}^{K} p_{rk}) =
$$

$$
-\sum_{r=1}^{R} \sum_{k=1}^{K} p_{rk} \log p_{rk} + \sum_{r=1}^{R} (p_{C_r} \log p_{C_r}) = H(\mathcal{T}, \mathcal{C})
$$

 $H(X,Y)$

$$
\begin{array}{c|c}\n & H(X) \\
\hline\n & H(X|Y) & H(Y)\n\end{array}
$$

 $(\log p_{rk} - \log p_{C_r})$

\mathcal{C}) – $H(\mathcal{C})$

Entropy-based measures: Conditional entropy

$$
H(\mathcal{T}|C_1) = -\left(\frac{0}{50}\right)\log_2\frac{0}{50} - \left(\frac{20}{50}\right)\log_2\frac{20}{50} - \left(\frac{30}{50}\right)\log_2\frac{30}{50} = 0.97
$$

$$
H(\mathcal{T}|C_2) = -\left(\frac{0}{25}\right)\log_2\frac{0}{25} - \left(\frac{20}{25}\right)\log_2\frac{20}{25} - \left(\frac{5}{25}\right)\log_2\frac{5}{25} = 0.72
$$

$$
H(\mathcal{T}|C_3) = -\left(\frac{25}{25}\right)\log_2\frac{25}{25} - \left(\frac{0}{25}\right)\log_2\frac{0}{25} - \left(\frac{0}{25}\right)\log_2\frac{0}{25} = 0.0
$$

■ Conditional entropy $H(\mathcal{T}|\mathcal{C}) =$ \times 0.97 + \times 0.72 + $\times 0.0 = 0.67$

Entropy-based measures: example

■ For each cluster:

■ When C and T are independent then $p_{rk} = p_{C_k} \times p_{T_k}$, and thus $I(C, T) = 0$. There is no upper bound on the mutual information.

$$
H(X)
$$

$$
H(X|Y)
$$

$$
I(X,Y)
$$

$$
H(Y|X)
$$

$$
H(Y)
$$

• We measure the dependency between the observed joint probability p_{rk} of C and T, and the expected joint probability $p_{\mathcal{C}_r}\times p_{T_k}$ under the independence assumption

CS4641B Machine Learning | Fall 2020 22

$\mathcal{T}) - H(\mathcal{T}|\mathcal{C})$

$$
I(C, \mathcal{T}) = \sum_{r=1}^{R} \sum_{k=1}^{K} p_{rk} \log \left(\frac{p_{rk}}{p_{C_r} \times p_{T_k}} \right) = H(C)
$$

Entropy-based measures: Mutual information

■ The mutual information tries to quantify the amount of shared information between the clustering C and partitioning T, and it is defined as

Entropy-based measures: Mutual information

■ The normalized mutual information is defined as the geometric mean:

$$
NMI(C, \mathcal{T}) = \sqrt{\frac{I(C, \mathcal{T})}{H(C)}} \times \frac{I(C, \mathcal{T})}{H(\mathcal{T})} = \frac{I(C, \mathcal{T})}{\sqrt{H(C) \times H(\mathcal{T})}}
$$

The NMI value lies in the range $[0, 1]$. Values close to 1 indicate a good clustering

$$
\begin{array}{c|c}\n & H(X) \\
\hline\nH(X|Y) & I(X,Y) \\
\hline\nH(Y)\n\end{array}
$$

• For clusters
\n
$$
H(\mathcal{C}) = -\left(\frac{50}{100}\right) \log_2 \frac{50}{100} - \left(\frac{25}{100}\right) \log_2 \frac{25}{100} - \left(\frac{25}{100}\right) \log_2 \frac{25}{100} =
$$

- For partitions $H(\mathcal{T}) = -$ 25 $\frac{10}{100}$ log₂ 25 $\frac{1}{100}$ – 40 $\frac{10}{100}$ log₂ 40 $\frac{1}{100}$ – 35 $\frac{100}{100}$ log₂ 35 100
- Mutual information $I(C, \mathcal{T}) = H(\mathcal{T}) - H(\mathcal{T}|C) = 1.56 - 0.67 = 0.88$
- Normalized mutual information $NMI(\mathcal{C}, \mathcal{T}) =$ $I(\mathcal{C},\mathcal{T}% _{M_{1},M_{2}}^{\ast}\mathcal{Z}_{M_{1},M_{2}}^{\ast}\mathcal{Z}_{M_{1},M_{2}}^{\ast}\mathcal{Z}_{M_{1},M_{2}}^{\ast}$ $H(\mathcal{C}) \times H(\mathcal{T})$ = 0.88 1.5×1.56 $= 0.57$

= 1.50

$= 1.56$

Entropy-based measures: example

Outline

External measures for clustering evaluation

- Matching-based measures
- **Entropy-based measures**
- **EXECUTE:** Pairwise measures
- Internal measures for clustering evaluation
	- **■** Graph-based measures
	- Davies-Bouldin Index
	- **E** Silhouette Coefficient

 $i = \hat{y}_j$

Pairwise measures

- Given clustering C and ground-truth partitioning T, let $\mathbf{x}_i, \mathbf{x}_j \in \mathbf{X}$ be any two points, with $i \neq j$. Let y_i denote the true partition label and let \hat{y}_i denote the cluster label for point \mathbf{x}_i .
- **True positives:** x_i and x_j belong to the same partition in T , and they are also in the same cluster in $\mathcal C$. The number of true positive pairs is given as

$$
TP = |\{(\mathbf{x}_i, \mathbf{x}_j): y_i = y_j \text{ and } \hat{y}_i = \hat{y}_j\}
$$

Some partition

• False negatives: x_i and x_j belong to the same partition in T , but they do not belong to the same cluster in C . The number of all false negative pairs is given as

• False positives: x_i and x_j do not belong to the same partition in T , but they do belong to the same cluster in C . The number of all false positive pairs is given as

True negatives: x_i and x_j neither belong to the same partition in T , nor do they belong to the same cluster in C . The number of such true negative pairs is given as

$$
TP = \sum_{r=1}^{R} \sum_{k=1}^{K} {n_{rk} \choose 2}
$$

\n
$$
FN = \sum_{k=1}^{K} {m_k \choose 2} - TP
$$

\n
$$
FP = \sum_{r=1}^{R} {n_r \choose 2} - TP
$$

\n
$$
TN = N - (TP + FN + FP)
$$

 $n_{12} = 20$ Points which have same C_1 and same T_2

Because there are $N =$ \overline{n} 2 = $n(n-1)$ 2

 $N = TP + FN + FP + TN$

Pairwise measures

pairs of points, we have the following identity:

Perfect clustering = 1

erfect clustering $= 1$ (like accuracy)

 $+FN$ tric mean of the pairwise

Pairwise measures

E Jaccard coefficient: measures the fraction of true positive point pairs, but after ignoring the true negative:

> $Jaccard =$ TP $TP + FN + FP$

■ Rand statistic: measures the fraction of true positives and true negatives over all point pairs:

$$
Rand = \frac{TP + TN}{N}
$$

• Fowlkes-Mallows measure: define the overall pairwise precision and pairwise recall values for a clustering C , as follows:

$$
prec = \frac{TP}{TP+FP}
$$

The Fowlkes-Mallows (FM) measure is defined as the geometric mean of
precision and recall (higher value means a better clustering)

$$
FM = \sqrt{prec \times recall} = \frac{TP}{\sqrt{(TP+FN)} \times (TP+FP)}
$$

CS4641B Machine Learning | Fall 2020 31

$$
N = TP + FN + FP + TN = \frac{100(100 - 1)}{2}
$$

$$
TP = \sum_{r=1}^{R} \sum_{k=1}^{K} {n_{rk} \choose 2} = \frac{20(20-1)}{2} + \frac{30(30-1)}{2} + \frac{20(20-1)}{2} + \frac{5(5-1)}{2} + \frac{25(25-1)}{2} = 1,125
$$

$$
FN = \sum_{k=1}^{K} {m_k \choose 2} - TP = \frac{25(25-1)}{2} + \frac{40(40-1)}{2} + \frac{35(35-1)}{2} - 1,125 = 5!
$$

$$
FP = \sum_{r=1}^{R} {n_r \choose 2} - TP = \frac{50(50 - 1)}{2} + \frac{25(25 - 1)}{2} + \frac{25(25 - 1)}{2} - 1,125 = 700
$$

TN = N -
$$
(TP + FN + FP)
$$
 = $\frac{100(100 - 1)}{2}$ - $(1,125 + 550 + 700)$ = 2,575

CS4641B Machine Learning | Fall 2020 32

$\frac{3}{2}$ = 4,950

 $50¹$

■ Jaccard coefficient:

$$
Jaccard = \frac{TP}{TP + FN + FP} = \frac{1,125}{1,125 + 550 + 700}
$$

■ Rand statistic:

$$
Rand = \frac{TP + TN}{N} = \frac{550 + 2,575}{4,950} =
$$

▪ Fowlkes-Mallows measure:

$$
prec = \frac{TP}{TP+FP} = \frac{1,125}{1,125+700} = 0.616 \qquad \text{recall} = \frac{TP}{TP+FN}
$$

 $FM = \sqrt{prec \times recall} = \sqrt{0.616 \times 0.672} = 0.643$

- $= 0.47$
- $= 0.63$
	- = 1,125 1,125+550 $= 0.672$
	-

Outline

- **External measures for clustering evaluation**
	- Matching-based measures
	- **Entropy-based measures**
	- **EXECUTE: Pairwise measures**
- **E** Internal measures for clustering evaluation
	- **Graph-based measures**
	- Davies-Bouldin Index
	- **E** Silhouette Coefficient

We want intra-cluster datapoints to be as close as possible to each other and inter-clusters to be as far as possible from each other

$$
W(S, R) = \sum_{\mathbf{x}_i \in S} \sum_{\mathbf{x}_j \in R} w_{ij}
$$

■ The sum of all the intracluster and intercluster weights are given as

$$
W_{in} = \frac{1}{2} \sum_{i=1}^{K} W(C_i, C_i)
$$

\nThe distance of each point is measured two times
\n
$$
\sum_{i=1}^{N} W(C_i, C_i)
$$

\n
$$
W_{out} = \frac{1}{2} \sum_{i=1}^{K} W(C_i, \overline{C_i})
$$

\n
$$
W_{out} = \frac{1}{2} \sum_{i=1}^{K} W(C_i, \overline{C_i})
$$

CS4641B Machine Learning | Fall 2020 35

, $\overline{C_i}$) = $\sum_{i=1}^{K-1} \sum_{j>i} W(C_i, C_j)$

Beta-CV measure

• Let W be the pairwise distance matrix for all the given points. For any two point sets S and R , we define:

Beta-CV measure

■ The number of distinct intracluster and intercluster edges is given as

EXEX EXTLED EXELEX FIGHTE: the Beta-CV measure is the ratio of the mean intracluster distance to the mean intercluster distance:

$$
N_{in} = \sum_{i=1}^{K} {n_i \choose 2} \qquad N_{out} = \sum_{i=1}^{K-1} \sum_{j=i+1}^{K} n_i \times n_j
$$

$$
BetaCV = \frac{\frac{W_{in}}{N_{in}}}{\frac{W_{out}}{N_{out}}} = \frac{N_{out}}{N_{in}} \times \frac{W_{in}}{W_{out}} = \frac{N_{out}}{N_{in}} \frac{\sum_{i}^{K_{out}}}{\sum_{i}^{K_{out}}}
$$

The smaller the Beta-CV ratio, the better the clustering.

 $\sum_{i=1}^K W(C_i, C_i)$ $\overline{\sum_{i=1}^K W(C_i,\overline{C}_i)}$

Normalized cut

■ Normalized cut:

$$
NC = \sum_{i=1}^{K} \frac{W(C_i, \overline{C_i})}{vol(C_i)} = \sum_{i=1}^{K} \frac{W(C_i, \overline{C_i})}{W(C_i, V)} = \sum_{i=1}^{K} \frac{W(C_i, \overline{C_i})}{W(C_i, \overline{C_i}) + W(C_i, C_i)}
$$

where $vol(C_i) = W(C_i, V)$ is the volume of cluster C_i . The higher normalized cut value, the better the clustering

Outline

- External measures for clustering evaluation
	- Matching-based measures
	- **Entropy-based measures**
	- **EXECUTE: Pairwise measures**
- **E** Internal measures for clustering evaluation
	- Graph-based measures
	- Davies-Bouldin Index
	- **E** Silhouette Coefficient

The Davies-Bouldin Index

E Let μ_i denote the cluster mean

$$
\mu_i = \frac{1}{n_i} \sum_{\mathbf{x}_j \in C_i} \mathbf{x}_j
$$

■ Let σ_{μ_i} denote the dispersion or spread of the points around the cluster mean

$$
\sigma_{\mu_i} = \sqrt{\frac{\sum_{\mathbf{x}_j \in C_i} \delta(\mathbf{x}_j, \mu_i)^2}{n_i}} = \sqrt{var(C_i)}
$$

- **The Davies-Bouldin measure for a pair of clusters** C_i **and** C_j **is defined as the ratio** $DB_{ij} =$ $\sigma_{\mu_i} + \sigma_{\mu_j}$ $d(\mu_i, \mu_j)$
- \blacksquare DB_{ij} measures how compact the clusters are compared to the distance between the cluster means. The Davies-Bouldin index is then defined as:

$$
DB = \frac{1}{K} \sum_{i=1}^{K} \max_{j \neq i} \{DB_{ij}\}
$$

A lower value means that the clustering is better.

Outline

- External measures for clustering evaluation
	- Matching-based measures
	- **Entropy-based measures**
	- **EXECUTE: Pairwise measures**
- **E** Internal measures for clustering evaluation
	- **Graph-based measures**
	- Davies-Bouldin Index
	- **E** Silhouette Coefficient

Silhouette coefficient

■ Total of 15 mean distances μ_{in} and 15 mean distances μ_{out} because we have 15 datapoints

 $\mu_{out_2}(\mathbf{x}_i)$

$\mu_{out}^{min}(\mathbf{x}_n) = \min\{\mu_{out_2}(\mathbf{x}_i)$, $\mu_{out_1}(\mathbf{x}_i)\}$

Silhouette coefficient

• Define the silhouette coefficient of a point X_n as

$$
S_i = \frac{\mu_{out}^{min}(\mathbf{x}_i) - \mu_{in}(\mathbf{x}_i)}{\max\{\mu_{out}^{min}(\mathbf{x}_i), \mu_{in}(\mathbf{x}_i)\}}
$$

where $\mu_{in}(\mathbf{x}_i)$ is the mean distance from \mathbf{x}_i to points in its own cluster \widehat{y}_i :

$$
\mu_{in}(\mathbf{x}_i) = \frac{\sum_{\mathbf{x}_i \in C_{\hat{\mathcal{Y}}_i}, j \neq i} d(\mathbf{x}_i, \mathbf{x}_j)}{n_{\hat{\mathcal{Y}}_i} - 1}
$$

and $\mu^{min}_{out}(\mathbf{x}_i)$ is the mean of the distances from \mathbf{x}_i to points in the closest cluster:

■ SC close to 1 implies a good clustering (points are close to their own clusters but far from other clusters)

CS4641B Machine Learning | Fall 2020 42

$$
\mu_{out}^{min}(\mathbf{x}_i) = \min_{j \neq \hat{y}_i} \left\{ \frac{\sum_{\mathbf{x} \in C_j} d(\mathbf{x}_i, \mathbf{x}_j)}{n_j} \right\}
$$

 \blacksquare The Silhouette Coefficient for clustering C:

$$
SC = \frac{1}{N} \sum_{i=1}^{N} Si
$$