
The week ahead
▪ Quiz 4: mean is 85% and average completion time 5min 40sec!

▪ Assignment 2 Early bird special → 1 complete programming question by Wed, Sep 23rd

▪ Fifth round of project seminars, available Thursday, Sep 24th

▪ HW1 grades are out! Regrade requests by Fri, Sep 25th

▪ Open office hours on Thursday, 7pm to 8pm
▪ https://primetime.bluejeans.com/a2m/live-event/qfsqxjec

▪ Quiz 5, Friday, Sep 25th 6am until Sep 26th 11:59am (noon)
▪ Hierarchical clustering, cluster evaluation, density estimation

▪ Touch-point 1: deliverables due Mon, Sep 28th, live-event Wed, Sep 30th

▪ Project proposal due Oct 2nd 11:59pm (midnight)

▪ Assignment 2 due Oct 5th 11:59pm (midnight)
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Coming up soon

https://primetime.bluejeans.com/a2m/live-event/qfsqxjec


These slides are based on slides from Mohammed Zaki, Chao Zhang, Jiawei Han and Mahdi Roozbahani

CS4641B Machine Learning

Lecture 10: Clustering evaluation
Rodrigo Borela ‣ rborelav@gatech.edu



Clustering Evaluation
▪ Clustering evaluation aims at quantifying the goodness or quality of the clustering.

▪ Two main categories of measures:
▪ External measures: employ external ground-truth
▪ Internal measures: derive goodness from the data itself
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Outline
▪ External measures for clustering evaluation

▪ Matching-based measures
▪ Entropy-based measures
▪ Pairwise measures

▪ Internal measures for clustering evaluation
▪ Graph-based measures
▪ Davies-Bouldin Index
▪ Silhouette Coefficient
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External measures
▪ External measures assume that the correct or ground-truth clustering is known a priori, 

which is used to evaluate a given clustering
▪ Let 𝐗 = 𝐱𝑛 𝑛=1

𝑁 be a dataset consisting of 𝑁 points in a 𝐷-dimensional space, 
partitioned into 𝐾 clusters. Let 𝑦𝑛 ∈ 1,2, … , 𝐾 denote the ground-truth cluster 
membership or label information for each point

▪ The ground-truth clustering is given as 𝒯 = 𝑇1, 𝑇2, … , 𝑇𝐾 , where the cluster 𝑇𝑘
consists of all the points with label 𝑘, i.e. 𝑇𝑘 = {𝐱𝑛 ∈ 𝐗|𝑦𝑛 = 𝑘}. We refer to 𝒯 as 
the ground-truth partitioning, and to each 𝑇𝑘 as a partition.

▪ Let 𝒞 = 𝐶1, 𝐶2, … , 𝐶𝑅 denote a clustering of the same dataset into 𝑅 clusters, 
obtained via some clustering algorithm, and let ො𝑦𝑛 ∈ 1,2, … , 𝑅 denote the cluster 
label for 𝐱𝑛.

▪ So 𝐾 is the number of ground-truth partitions (𝒯) and 𝑅 is the number of clusters (𝒞) 
obtained by algorithm

▪ 𝑛𝑟𝑘 = Number of data points in cluster 𝒓 which are also in ground-truth partition 𝒌
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▪ Purity: Quantifies the extent that cluster 𝐶𝑖 contains points only from one (ground 
truth) partition.

▪ The total purity of clustering 𝒞 is the 
weighted sum of the cluster-wise purity:

▪ What is purity value for a perfect clustering?
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Matching-based measures: Purity

𝑝𝑢𝑟𝑖𝑡𝑦3 =
1

𝑛3
max 𝑛31, 𝑛32, 𝑛33

=
1

9
max 2,0,7 =

7

9

𝑝𝑢𝑟𝑖𝑡𝑦 = ෍

𝑟=1

𝑅
𝑛𝑟
𝑁
𝑝𝑢𝑟𝑖𝑡𝑦𝑟 =

1

𝑁
෍

𝑟=1

𝑅

max
𝐾

𝑘=1
𝑛𝑟𝑘

𝑝𝑢𝑟𝑖𝑡𝑦𝑟 =
1

𝑛𝑟
max
𝐾

𝑘=1
𝑛𝑟𝑘

𝑝𝑢𝑟𝑖𝑡𝑦 = 1



C\T T1 T2 T3 Sum

C1 0 20 30 50

C2 0 20 5 25

C3 25 0 0 25

mj 25 40 35 100

𝑝𝑢𝑟𝑖𝑡𝑦1 = 30/50
𝑝𝑢𝑟𝑖𝑡𝑦2 = 20/25
𝑝𝑢𝑟𝑖𝑡𝑦3 = 25/25

𝑝𝑢𝑟𝑖𝑡𝑦 =
30 + 20 + 25

100
= 0.75
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𝑝𝑢𝑟𝑖𝑡𝑦 =෍

𝑟=1

𝑅
𝑛𝑟
𝑁
𝑝𝑢𝑟𝑖𝑡𝑦𝑟 =

1

𝑁
෍

𝑟=1

𝑅

max
𝐾

𝑘=1
𝑛𝑟𝑘𝑝𝑢𝑟𝑖𝑡𝑦𝑟 =

1

𝑛𝑟
max
𝐾

𝑘=1
𝑛𝑟𝑘

Purity: example



C\T T1 T2 T3 Sum

C1 0 30 20 50

C2 0 20 5 25

C3 25 0 0 25

mj 25 50 25 100

C\T T1 T2 T3 Sum

C1 0 20 30 50

C2 0 20 5 25

C3 25 0 0 25

mj 25 40 35 100

𝑝𝑢𝑟𝑖𝑡𝑦 =
30 + 20 + 25

100
= 0.75 𝑝𝑢𝑟𝑖𝑡𝑦 =

30 + 20 + 25

100
= 0.75

𝐶1 is more paired with 𝑇3
𝐶2 is more paired with 𝑇2

𝐶1 is more paired with 𝑇2
𝐶2 is more paired with 𝑇2
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Purity: example
▪ Two clusters may be matched to the same partition



Example: 
Maximum matching = 0.65 > 0.6

C\T T1 T2 T3 Sum

C1 0 30 20 50

C2 0 20 5 25

C3 25 0 0 25

mj 25 50 25 100
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▪ Drawback of purity: two clusters may be matched to the same partition.
▪ Maximum matching: the maximum purity under the one-to-one matching constraint.

▪ Examine all possible pairwise matching between C and T and choose the best (the 
maximum)

Matching-based measures: Maximum matching



C\T T1 T2 T3 Sum

C1 0 30 20 50

C2 0 20 5 25

C3 25 0 0 25

mj 25 50 25 100

𝐶1 is more paired with 𝑇2, 𝑝𝑢𝑟𝑖𝑡𝑦 =
30+5+25

100
= 0.6

𝐶1 is more paired with 𝑇3, 𝑝𝑢𝑟𝑖𝑡𝑦 =
20+20+25

100
= 0.65

𝑝𝑢𝑟𝑖𝑡𝑦 = 0.65

MAX
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Purity: example
▪ Maximum weight matching: Only one cluster can match one partition

▪ Example: If 𝐶1 is more paired with 𝑇2 THEN 𝐶2 and 𝐶3 cannot paired with 𝑇2
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good shots

bad shots

Precision, accuracy and recall



Correct 
prediction

Wrong
prediction

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑒𝑠𝑢𝑙𝑡𝑠
=

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

False positive is also called false alarm
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Precision, accuracy and recall
▪ Number of predicted “positive” labeled data  = True Positive   + False Positive
▪ Number of predicted “negative” labeled data = True Negative + False Negative

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑅𝑒𝑠𝑢𝑙𝑡𝑠
=

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙



𝑟𝑒𝑐𝑎𝑙𝑙1 =
6

10
𝑝𝑟𝑒𝑐1 =

6

6
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▪ Precision: which measures quality, is the same as purity:
▪ How precisely does each cluster represent the ground truth?

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑟 =
1

𝑛𝑟
max
𝐾

𝑘=1
𝑛𝑟𝑘 =

𝑛𝑟𝑘𝑟
𝑛𝑟

▪ Recall: measures completeness
▪ How completely does each cluster recover the ground truth?

𝑟𝑒𝑐𝑎𝑙𝑙𝑟 =
𝑛𝑟𝑘𝑟
𝑇𝑘𝑟

=
𝑛𝑟𝑘𝑟
𝑚𝑘𝑟

The fraction of point in partition 𝑇𝑘 shared with cluster 𝐶𝑟

Matching-based measures: F-measure

Example:



C\T T1 T2 T3 Sum

C1 0 20 30 50

C2 0 20 5 25

C3 25 0 0 25

mj 25 40 35 100

(Precision here is same as the purity)

Precision:
𝑝𝑟𝑒𝑐1 = 30/50
𝑝𝑟𝑒𝑐2 = 20/25
𝑝𝑟𝑒𝑐3 = 25/25

Recall:
𝑟𝑒𝑐𝑎𝑙𝑙1 = 30/35
𝑟𝑒𝑐𝑎𝑙𝑙2 = 20/40
𝑟𝑒𝑐𝑎𝑙𝑙3 = 25/25
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Precision and recall

https://en.wikipedia.org/wiki/Precision_and_recall


Example: 

𝐹1 =
2×30

35+50
=

60

85
𝐹2 =

2×20

40+25
=

40

65
𝐹3 =

2×25

25+25
= 1

𝐹 = 0.774

C\T T1 T2 T3 Sum

C1 0 20 30 50

C2 0 20 5 25

C3 25 0 0 25

mj 25 40 35 100
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▪ F-Measure: the harmonic mean of precision and recall
▪ Take into account both precision and completeness

𝐹𝑟 =
2

1
𝑝𝑟𝑒𝑐𝑟

+
1

𝑟𝑒𝑐𝑎𝑙𝑙𝑟

=
2 × 𝑝𝑟𝑒𝑐𝑟 × 𝑟𝑒𝑐𝑎𝑙𝑙𝑟
𝑝𝑟𝑒𝑐𝑟 + 𝑟𝑒𝑐𝑎𝑙𝑙𝑟

=
2 × 𝑛𝑟𝑘𝑟
𝑛𝑟 +𝑚𝑘𝑟

▪ The F-measure for the clustering 𝒞 is the mean of clusterwise F-measure values

𝐹 =
1

𝑅
෍

𝑟=1

𝑅

𝐹𝑟

Matching-based measures: F-measure



Outline
▪ External measures for clustering evaluation

▪ Matching-based measures
▪ Entropy-based measures
▪ Pairwise measures

▪ Internal measures for clustering evaluation
▪ Graph-based measures
▪ Davies-Bouldin Index
▪ Silhouette Coefficient
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▪ Amount of information orderness in different partitions
▪ The entropy for clustering 𝒞 and partition 𝒯 is:

𝐻 𝒞 = −σ𝑟=1
𝑅 𝑝𝐶𝑟 log2 𝑝𝐶𝑟 𝐻 𝒯 = −σ𝑘=1

𝐾 𝑝𝑇𝑘 log2 𝑝𝑇𝑘

where 𝑝𝐶𝑟 =
𝑛𝑟

𝑁
(𝑛𝑟: row-wise summation, i.e. the probability of cluster 𝐶𝑟, 𝑛𝑟 = 𝑛𝑟1 +⋯+ 𝑛𝑟𝐾) and 

𝑝𝑇𝑘 =
𝑚𝑘

𝑁
(𝑚𝑘: column-wise summation, i.e. the probability of cluster 𝑇𝑘)

▪ Conditional Entropy: The cluster-specific entropy, namely the conditional entropy of 𝒯
with respect to cluster 𝐶𝑟:

𝐻 𝒯|𝐶𝑟 = −෍
𝑘=1

𝐾 𝑛𝑟𝑘
𝑛𝑟

log
𝑛𝑟𝑘
𝑛𝑟

How ground truth is distributed within each cluster

Entropy-based measures: Conditional entropy

𝑛 𝑟 𝑘

Cluster 
(𝑪)

Ground-truth
(𝑻)
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▪ The conditional entropy of 𝒯 given clustering 𝒞 is defined as the weighted sum:

𝐻 𝒯|𝒞 =෍
𝑟=1

𝑅 𝑛𝑟
𝑁
𝐻 𝒯|𝐶𝑟 = −෍

𝑟=1

𝑅

෍

𝑘=1

𝐾

𝑝𝑟𝑘 log
𝑝𝑟𝑘
𝑝𝐶𝑟

= 𝐻 𝒞,𝒯 − 𝐻 𝒞

▪ The more clusters members are split into different partitions, the higher the 
conditional entropy (not a desirable condition and the max value is log2𝐾)

▪ 𝐻 𝒯|𝒞 = 0 if and only if 𝒯 is completely determined by 𝒞, corresponding to the 
ideal clustering. If 𝒞 and 𝒯 are independent of each other, then 𝐻 𝒯|𝒞 = 𝐻 𝒯 .

▪ Refresher: 𝐻 𝑌 𝑋 = σ𝑥∈𝑋 𝑝 𝑥 𝐻(𝑌|𝑋 = 𝑥), 𝐻 𝑌 𝑋 = 𝐻 𝑋, 𝑌 − 𝐻(𝑋)

Entropy-based measures: Conditional entropy

𝑛𝑟𝑘
𝑛𝑟

𝑛𝑟
𝑁
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𝐻 𝒯|𝒞 = −෍

𝑟=1

𝑅

෍

𝑘=1

𝐾

𝑝𝑟𝑘 log
𝑝𝑟𝑘
𝑝𝐶𝑟

= −෍

𝑟=1

𝑅

෍

𝑘=1

𝐾

𝑝𝑟𝑘 log 𝑝𝑟𝑘 − log 𝑝𝐶𝑟

= −෍

𝑟=1

𝑅

෍

𝑘=1

𝐾

𝑝𝑟𝑘 log 𝑝𝑟𝑘 + ෍

𝑟=1

𝑅

(log 𝑝𝐶𝑟 ෍

𝑘=1

𝐾

𝑝𝑟𝑘) =

− ෍

𝑟=1

𝑅

෍

𝑘=1

𝐾

𝑝𝑟𝑘 log 𝑝𝑟𝑘 + ෍

𝑟=1

𝑅

(𝑝𝐶𝑟 log 𝑝𝐶𝑟) =𝐻 𝒯, 𝒞 − 𝐻(𝒞)

Entropy-based measures: Conditional entropy
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▪ For each cluster:

𝐻 𝒯|𝐶1 = −
0

50
log2

0

50
−

20

50
log2

20

50
−

30

50
log2

30

50
= 0.97

𝐻 𝒯|𝐶2 = −
0

25
log2

0

25
−

20

25
log2

20

25
−

5

25
log2

5

25
= 0.72

𝐻 𝒯|𝐶3 = −
25

25
log2

25

25
−

0

25
log2

0

25
−

0

25
log2

0

25
= 0.0

▪ Conditional entropy

𝐻 𝒯|𝒞 =
50

100
× 0.97 +

25

100
× 0.72 +

25

100
× 0.0 = 0.67

Entropy-based measures: example

C\T T1 T2 T3 Sum

C1 0 20 30 50

C2 0 20 5 25

C3 25 0 0 25

mj 25 40 35 100
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▪ The mutual information tries to quantify the amount of shared information between 
the clustering 𝒞 and partitioning 𝒯, and it is defined as

𝐼 𝒞, 𝒯 =෍

𝑟=1

𝑅

෍

𝑘=1

𝐾

𝑝𝑟𝑘 log
𝑝𝑟𝑘

𝑝𝐶𝑟 × 𝑝𝑇𝑘
= 𝐻 𝒯 − 𝐻 𝒯|𝒞

▪ When 𝒞 and 𝒯 are independent then 𝑝𝑟𝑘 = 𝑝𝐶𝑘 × 𝑝𝑇𝑘, and thus 𝐼 𝒞, 𝒯 = 0. There is 

no upper bound on the mutual information.

▪ We measure the dependency between the observed joint probability 𝑝𝑟𝑘 of 𝐶 and 𝑇, 
and the expected joint probability 𝑝𝐶𝑟 × 𝑝𝑇𝑘 under the independence assumption

Entropy-based measures: Mutual information
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Entropy-based measures: Mutual information
▪ The normalized mutual information is defined as the geometric mean:

𝑁𝑀𝐼 𝒞, 𝒯 =
𝐼 𝒞, 𝒯

𝐻 𝒞
×
𝐼 𝒞, 𝒯

𝐻 𝒯
=

𝐼 𝒞, 𝒯

𝐻 𝒞 × 𝐻 𝒯

The 𝑁𝑀𝐼 value lies in the range 0, 1 . Values close to 1 indicate a good clustering
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▪ For clusters

𝐻 𝒞 = −
50

100
log2

50

100
−

25

100
log2

25

100
−

25

100
log2

25

100
= 1.50

▪ For partitions

𝐻 𝒯 = −
25

100
log2

25

100
−

40

100
log2

40

100
−

35

100
log2

35

100
= 1.56

▪ Mutual information
𝐼 𝒞, 𝒯 = 𝐻 𝒯 − 𝐻 𝒯|𝒞 = 1.56 − 0.67 = 0.88

▪ Normalized mutual information

𝑁𝑀𝐼 𝒞, 𝒯 =
𝐼 𝒞, 𝒯

𝐻 𝒞 × 𝐻 𝒯
=

0.88

1.5 × 1.56
= 0.57

Entropy-based measures: example

C\T T1 T2 T3 Sum

C1 0 20 30 50

C2 0 20 5 25

C3 25 0 0 25

mj 25 40 35 100



Outline
▪ External measures for clustering evaluation

▪ Matching-based measures
▪ Entropy-based measures
▪ Pairwise measures

▪ Internal measures for clustering evaluation
▪ Graph-based measures
▪ Davies-Bouldin Index
▪ Silhouette Coefficient
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Same partition Same cluster
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Pairwise measures
▪ Given clustering 𝒞 and ground-truth partitioning 𝒯, let 𝐱𝑖 , 𝐱𝑗 ∈ 𝐗 be any two points, 

with 𝑖 ≠ 𝑗. Let 𝑦𝑖 denote the true partition label and let ො𝑦𝑖 denote the cluster label for 
point 𝐱𝑖.

▪ True positives: 𝐱𝑖 and 𝐱𝑗 belong to the same partition in 𝒯, and they are also in the 

same cluster in 𝒞. The number of true positive pairs is given as

𝑇𝑃 = 𝐱𝑖 , 𝐱𝑗 : 𝑦𝑖 = 𝑦𝑗 and ො𝑦𝑖 = ො𝑦𝑗



Same partition Different cluster
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Pairwise measures
▪ False negatives: 𝐱𝑖 and 𝐱𝑗 belong to the same partition in 𝒯, but they do not belong to 

the same cluster in 𝒞. The number of all false negative pairs is given as

𝐹𝑁 = 𝐱𝑖 , 𝐱𝑗 : 𝑦𝑖 = 𝑦𝑗 and ො𝑦𝑖 ≠ ො𝑦𝑗
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Different partition Same cluster

Pairwise measures
▪ False positives: 𝐱𝑖 and 𝐱𝑗 do not belong to the same partition in 𝒯, but they do belong 

to the same cluster in 𝒞. The number of all false positive pairs is given as

𝐹𝑃 = 𝐱𝑖 , 𝐱𝑗 : 𝑦𝑖 ≠ 𝑦𝑗 and ො𝑦𝑖 = ො𝑦𝑗
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Different partition Different cluster

Pairwise measures
▪ True negatives: 𝐱𝑖 and 𝐱𝑗 neither belong to the same partition in 𝒯, nor do they belong 

to the same cluster in 𝒞. The number of such true negative pairs is given as

𝐹𝑃 = 𝐱𝑖 , 𝐱𝑗 : 𝑦𝑖 ≠ 𝑦𝑗 and ො𝑦𝑖 ≠ ො𝑦𝑗



TP =෍

𝑟=1

𝑅

෍

𝑘=1

𝐾
𝑛𝑟𝑘
2

FN = ෍

𝑘=1

𝐾
𝑚𝑘

2
− 𝑇𝑃

FP = ෍

𝑟=1

𝑅
𝑛𝑟
2

− 𝑇𝑃

TN = 𝑁 − (𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃)

C\T T1 T2 T3 Sum

C1 0 20 30 50

C2 0 20 5 25

C3 25 0 0 25

mj 25 40 35 100

𝑛12 = 20 Points which have 
same 𝐶1 and same 𝑇2
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Pairwise measures

▪ Because there are 𝑁 =
𝑛
2

=
𝑛 𝑛−1

2
pairs of points, we have the following identity:

𝑁 = 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁



Perfect clustering = 1

Perfect clustering = 1 (like accuracy)
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Pairwise measures
▪ Jaccard coefficient: measures the fraction of true positive point pairs, but after ignoring 

the true negative:

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
▪ Rand statistic: measures the fraction of true positives and true negatives over all point 

pairs:

𝑅𝑎𝑛𝑑 =
𝑇𝑃 + 𝑇𝑁

𝑁
▪ Fowlkes-Mallows measure: define the overall pairwise precision and pairwise recall 

values for a clustering 𝒞, as follows:

𝑝𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁

The Fowlkes-Mallows (FM) measure is defined as the geometric mean of the pairwise 
precision and recall (higher value means a better clustering)

𝐹𝑀 = 𝑝𝑟𝑒𝑐 × 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 × 𝑇𝑃 + 𝐹𝑃



C\T T1 T2 T3 Sum

C1 0 20 30 50

C2 0 20 5 25

C3 25 0 0 25

mk 25 40 35 100
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Pairwise measures

𝑁 = 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁 =
100 100 − 1

2
= 4,950

TP =෍

𝑟=1

𝑅

෍

𝑘=1

𝐾
𝑛𝑟𝑘
2

=
20 20 − 1

2
+
30 30 − 1

2
+
20 20 − 1

2
+
5 5 − 1

2
+
25 25 − 1

2
= 1,125

FN = ෍

𝑘=1

𝐾
𝑚𝑘

2
− 𝑇𝑃 =

25 25 − 1

2
+
40 40 − 1

2
+
35 35 − 1

2
− 1,125 = 550

FP = ෍

𝑟=1

𝑅
𝑛𝑟
2

− 𝑇𝑃 =
50 50 − 1

2
+
25 25 − 1

2
+
25 25 − 1

2
− 1,125 = 700

TN = 𝑁 − 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 =
100 100 − 1

2
− 1,125 + 550 + 700 = 2,575
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Pairwise measures
▪ Jaccard coefficient:

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
=

1,125

1,125 + 550 + 700
= 0.47

▪ Rand statistic:

𝑅𝑎𝑛𝑑 =
𝑇𝑃 + 𝑇𝑁

𝑁
=
550 + 2,575

4,950
= 0.63

▪ Fowlkes-Mallows measure: 

𝑝𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

1,125

1,125+700
= 0.616 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
=

1,125

1,125+550
= 0.672

𝐹𝑀 = 𝑝𝑟𝑒𝑐 × 𝑟𝑒𝑐𝑎𝑙𝑙 = 0.616 × 0.672 = 0.643



Outline
▪ External measures for clustering evaluation

▪ Matching-based measures
▪ Entropy-based measures
▪ Pairwise measures

▪ Internal measures for clustering evaluation
▪ Graph-based measures
▪ Davies-Bouldin Index
▪ Silhouette Coefficient

We want intra-cluster datapoints to be as close as 
possible to each other and inter-clusters to be as 
far as possible from each other
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▪ Let 𝑊 be the pairwise distance matrix for all the given points. For any two point sets 𝑆
and 𝑅, we define:

𝑊 𝑆, 𝑅 = ෍

𝐱𝑖∈ 𝑆

෍

𝐱𝑗∈ 𝑅

𝑤𝑖𝑗

▪ The sum of all the intracluster and intercluster weights are given as

𝑊𝑖𝑛 =
1

2
σ𝑖=1
𝐾 𝑊 𝐶𝑖 , 𝐶𝑖 𝑊𝑜𝑢𝑡 =

1

2
σ𝑖=1
𝐾 𝑊 𝐶𝑖 , ഥ𝐶𝑖 = σ𝑖=1

𝐾−1σ𝑗>𝑖𝑊 𝐶𝑖 , 𝐶𝑗

cohesion separation

The distance of each point 
is measured two times
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Beta-CV measure
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Beta-CV measure
▪ The number of distinct intracluster and intercluster edges is given as

𝑁𝑖𝑛 = σ𝑖=1
𝐾 𝑛𝑖

2
𝑁𝑜𝑢𝑡 = σ𝑖=1

𝐾−1σ𝑗=𝑖+1
𝐾 𝑛𝑖 × 𝑛𝑗

▪ Beta-CV measure: the Beta-CV measure is the ratio of the mean intracluster distance to 
the mean intercluster distance:

𝐵𝑒𝑡𝑎𝐶𝑉 =

𝑊𝑖𝑛
𝑁𝑖𝑛
𝑊𝑜𝑢𝑡
𝑁𝑜𝑢𝑡

=
𝑁𝑜𝑢𝑡
𝑁𝑖𝑛

×
𝑊𝑖𝑛

𝑊𝑜𝑢𝑡
=
𝑁𝑜𝑢𝑡
𝑁𝑖𝑛

σ𝑖=1
𝐾 𝑊 𝐶𝑖 , 𝐶𝑖

σ𝑖=1
𝐾 𝑊 𝐶𝑖 , ഥ𝐶𝑖

The smaller the Beta-CV ratio, the better the clustering.
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Normalized cut
▪ Normalized cut:

𝑁𝐶 =෍

𝑖=1

𝐾
𝑊 𝐶𝑖 , ഥ𝐶𝑖
𝑣𝑜𝑙 𝐶𝑖

=෍

𝑖=1

𝐾
𝑊 𝐶𝑖 , ഥ𝐶𝑖
𝑊 𝐶𝑖 , 𝑉

=෍

𝑖=1

𝐾
𝑊 𝐶𝑖 , ഥ𝐶𝑖

𝑊 𝐶𝑖 , ഥ𝐶𝑖 +𝑊 𝐶𝑖 , 𝐶𝑖
=෍

𝑖=1

𝐾
1

𝑊 𝐶𝑖 , 𝐶𝑖
𝑊 𝐶𝑖 , ഥ𝐶𝑖

+ 1

where 𝑣𝑜𝑙 𝐶𝑖 = 𝑊 𝐶𝑖 , 𝑉 is the volume of cluster 𝐶𝑖. The higher normalized cut value, 
the better the clustering



Outline
▪ External measures for clustering evaluation

▪ Matching-based measures
▪ Entropy-based measures
▪ Pairwise measures

▪ Internal measures for clustering evaluation
▪ Graph-based measures
▪ Davies-Bouldin Index
▪ Silhouette Coefficient
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The Davies-Bouldin Index
▪ Let 𝜇𝑖 denote the cluster mean

𝜇𝑖 =
1

𝑛𝑖
෍

𝐱𝑗∈𝐶𝑖

𝐱𝑗

▪ Let 𝜎𝜇𝑖 denote the dispersion or spread of the points around the cluster mean

𝜎𝜇𝑖 =
σ𝐱𝑗∈𝐶𝑖

𝛿(𝐱𝑗 , 𝜇𝑖)
2

𝑛𝑖
= 𝑣𝑎𝑟 𝐶𝑖

▪ The Davies-Bouldin measure for a pair of clusters 𝐶𝑖 and 𝐶𝑗 is defined as the ratio

𝐷𝐵𝑖𝑗 =
𝜎𝜇𝑖 + 𝜎𝜇𝑗

𝑑 𝜇𝑖 , 𝜇𝑗
▪ 𝐷𝐵𝑖𝑗 measures how compact the clusters are compared to the distance between the cluster 

means. The Davies-Bouldin index is then defined as:

𝐷𝐵 =
1

𝐾
෍

𝑖=1

𝐾

max
𝑗≠𝑖

𝐷𝐵𝑖𝑗

A lower value means that the clustering is better.



Outline
▪ External measures for clustering evaluation

▪ Matching-based measures
▪ Entropy-based measures
▪ Pairwise measures

▪ Internal measures for clustering evaluation
▪ Graph-based measures
▪ Davies-Bouldin Index
▪ Silhouette Coefficient
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𝐱𝑖𝜇𝑖𝑛(𝐱𝑖)

𝜇𝑜𝑢𝑡2(𝐱𝑖)

𝜇𝑜𝑢𝑡1(𝐱𝑖)
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Silhouette coefficient
▪ Total of 15 mean distances 𝜇𝑖𝑛 and 15 

mean distances 𝜇𝑜𝑢𝑡 because we have 
15 datapoints

𝜇𝑜𝑢𝑡
𝑚𝑖𝑛 𝐱𝑛 = min{𝜇𝑜𝑢𝑡2 𝐱𝑖 , 𝜇𝑜𝑢𝑡1(𝐱𝑖)}
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Silhouette coefficient
▪ Define the silhouette coefficient of a point 𝐱𝑛 as

𝑆𝑖 =
𝜇𝑜𝑢𝑡
𝑚𝑖𝑛 𝐱𝑖 − 𝜇𝑖𝑛 𝐱𝑖

max 𝜇𝑜𝑢𝑡
𝑚𝑖𝑛 𝐱𝑖 , 𝜇𝑖𝑛 𝐱𝑖

where 𝜇𝑖𝑛 𝐱𝑖 is the mean distance from 𝐱𝑖 to points in its own cluster ො𝑦𝑖:

𝜇𝑖𝑛 𝐱𝑖 =
σ𝐱𝑖 ∈ 𝐶ෝ𝑦𝑖

,𝑗≠𝑖 𝑑 𝐱𝑖 , 𝐱𝑗

𝑛 ො𝑦𝑖 − 1

and 𝜇𝑜𝑢𝑡
𝑚𝑖𝑛 𝐱𝑖 is the mean of the distances from 𝐱𝑖 to points in the closest cluster:

𝜇𝑜𝑢𝑡
𝑚𝑖𝑛 𝐱𝑖 = min

𝑗≠ ො𝑦𝑖

σ𝐱 ∈𝐶𝑗
𝑑 𝐱𝑖 , 𝐱𝑗

𝑛𝑗

▪ The Silhouette Coefficient for clustering 𝐶:

𝑆𝐶 =
1

𝑁
෍

𝑖=1

𝑁

𝑆𝑖

▪ SC close to 1 implies a good clustering (points are close to their own clusters but far from other 
clusters)


