

CS4641B Machine Learning Lecture 09: Hierarchical clustering

Rodrigo Borela ► rborelav@gatech.edu

Outline

- Overview
- Bottom-Up vs Top-Down Clustering
- Measuring Distance between Clusters

Outline

- Overview
- Bottom-Up vs Top-Down Clustering
- Measuring Distance between Clusters

Hierarchical Clustering vs Partitional Clustering

Tree structure (parent-child relationship)

K-Means, DBSCAN

Hierarchical Clustering

How to organize a set of CS papers into a hierarchy?

Hierarchical Clustering

Organize objects into a tree-based hierarchical taxonomy (dendrogram)

- Many applications in the real world
 - Web pages
 - News articles
 - Scientific papers

Example

 DNA sequencing and hierarchical clustering to find the phylogenetic tree of animal evolution

Using Hierarchical clustering, the researchers were able to place the giant pandas closer to bears

Hierarchical clustering

- Organizing data at multiple granularities
- Cutting the dendrogram at a desired level leads to a sub-cluster: each connected component forms a cluster

Outline

- Overview
- Bottom-Up vs Top-Down Clustering
- Measuring Distance between Clusters

Two Paradigms for hierarchical clustering

- Bottom-up agglomerative clustering
 - Start by considering each object as a separate cluster
 - Repeatedly join the closest pair of clusters
 - Stop when there is only one cluster left
- Top-down divisive clustering
 - Start by considering all objects as one large cluster
 - Recursively divide each cluster into two sub-clusters
 - Stop when each cluster contains only one object

Bottom-up vs Top-down

1. Say "every point is its own cluster"

- 1. Say "every point is its own cluster"
- 2. Find "most similar" pair of clusters

- 1. Say "every point is its own cluster"
- 2. Find "most similar" pair of clusters
- 3. Merge it into a parent cluster

- 1. Say "every point is its own cluster"
- 2. Find "most similar" pair of clusters
- 3. Merge it into a parent cluster
- 4. Repeat

- 1. Say "every point is its own cluster"
- 2. Find "most similar" pair of clusters
- 3. Merge it into a parent cluster
- 4. Repeat

Outline

- Overview
- Bottom-Up vs Top-Down Clustering
- Measuring Distance between Clusters

Key question: similarity function

How to define "similarity" between two clusters?

I am going to merge A with either B or C.

Which one?

Single Link

I am going to merge A with either B or C. Which one?

d(A,C) < d(A,B), so?

Complete Link

Key question: similarity function

- Single link: A chain of points can be extended for long distances without regard to the overall shape of the emerging cluster. This effect is called *chaining*. It is also sensitive to outliers. It is faster in general.
- Complete link: Clusters are split into two groups of roughly equal size when we cut the dendrogram at the last merge. In general, this is a more useful organization of the data than a clustering with chains. It avoids chaining and more robust to outliers. Generally slower.

Average link: When you don't know which one may be better for you, start it with the average link method.

How to define distance between two clusters?

Different algorithms differ in how the similarities are defined (and hence updated) between two clusters:

- Single-link
 - Nearest neighbor: similarity between their closest members
- Complete-link
 - Furthest neighbor: similarity between their furthest members
- Centroid:
 - Similarity between the centers of gravity
- Average-link
 - Average similarity of all cross-cluster pairs.

Example:

Distance based on centroid

EUCLIDEAN DISTANCE

	Α	В	С	D	E
Α	0	1	1.4	3.2	4.5
В	1	0	2.2	4.1	5.4
С	1.4	2.2	0	2.8	4.2
D	3.2	4.1	2.8	0	1.4
E	4.5	5.4	4.2	1.4	0

25

	А	В	C	D	E
A	0	H	1.4	3.2	4.5
В	1	0	2.2	4.1	5.4
С	1.4	2.2	0	2.8	4.2
D	3.2	4.1	2.8	0	1.4
Е	4.5	5.4	4.2	1.4	0

EUCLIDEAN DISTANCE

	(A,B)	С	D	E
(A,B)	0	1.8	3.6	4.9
С	1.8	0	2.8	4.2
D	3.6	2.8	0	1.4
Е	4.9	4.2	1.4	0

Dendrogram

	(A,B)	С	D	Е
(A,B)	0	1.8	3.6	4.9
С	1.8	0	2.8	4.2
D	3.6	2.8	0	1.4
E	4.9	4.2	1.4	0

EUCLIDEAN DISTANCE

	(A,B)	С	(D,E)
(A,B)	0	1.8	4.25
С	1.8	0	3.5
(D,E)	4.25	3.5	0

Dendrogram

	((A,B),C)	(D,E)
((A,B),C)	0	3.875
(D,E)	3.875	0

	(((A,B),C),(D,E))
(((A,B),C),(D,E))	0

Dendrogram

Example:

Distance nearest points

i	x_1	x_2
Α	1	1
В	1	0
С	0	2
D	1.5	3.5
E	3	5

EUCLIDEAN DISTANCE

	Α	В	С	D	E
Α	0	1	1.4	2.55	4.5
В	1	0	2.2	3.53	5.4
С	1.4	2.2	0	2.12	4.2
D	2.55	3.53	2.12	0	2.12
E	4.5	5.4	4.2	2.12	0

	А	В	С	D	" E
A	0	11	1.4	2.55	4.5
В	1	0	2.2	3.53	5.4
С	1.4	2.2	0	2.12	4.2
D	2.55	3.53	2.12	0	2.12
Е	4.5	5.4	4.2	2.12	0

EUCLIDEAN DISTANCE

	(A,B)	С	D	Е
(A,B)	0	1.4	2.55	4.5
С	1.4	0	2.12	4.2
D	2.55	2.12	0	2.12
Е	4.5	4.2	2.12	0

Dendrogram

	(A,B)	С	D	E
(A,B)	0	1.4	2.55	4.5
C	1.4	0	2.12	4.2
D	2.55	2.12	0	2.12
Е	4.5	4.2	2.12	0

	(A,B),C	D	E
(A,B),C	0	2.12	4.2
D	2.12	0	2.12
E	4.2	2.12	0

	(A,B),C	D	E
(A,B),C	0	2.12	4.2
D	2.12	0	2.12
E	4.2	2.12	0

	((A,B),C)	(D,E)
((A,B),C)	0	2.12
(D,E)	2.12	0

	(((A,B),C),(D,E))
(((A,B),C),(D,E))	0

Example:

Distance farthest points

i	x_1	x_2
А	1	1
В	1	0
С	0	2
D	1.5	3.5
E	3	5

EUCLIDEAN DISTANCE

	Α	В	С	D	Е
Α	0	1	1.4	2.55	4.5
В	1	0	2.2	3.53	5.4
С	1.4	2.2	0	2.12	4.2
D	2.55	3.53	2.12	0	2.12
E	4.5	5.4	4.2	2.12	0

	А	В	T C	→ D	→ E
A	0		1.4	2.55	4.5
В	1	0	2.2	3.53	5.4
С	1.4	2.2	0	2.12	4.2
D	2.55	3.53	2.12	0	2.12
Е	4.5	5.4	4.2	2.12	0

	(A,B)	С	D	E
(A,B)	0	2.2	3.55	5.4
С	2.2	0	2.12	4.2
D	3.55	2.12	0	2.12
Е	5.4	4.2	2.12	0

	(A,B)	C	D	Е
(A,B)	Ø	2.2	3.55	5.4
С	2,2	0	2.12	4.2
D	3.55	2.12	0	2.12
E	5.4	4.2	2.12	0

	(A,B)	С	(D,E)
(A,B)	0	2.2	5.4
С	2.2	0	4.2
(D,E)	5.4	4.2	0

	((A,B),C)	(D,E)
((A,B),C)	0	5.4
(D,E)	5.4	0

	(((A,B),C),(D,E))
(((A,B),C),(D,E))	0

Example

(From Bien et al. (2011))

Closest pair (single-link clustering)

Farthest pair (complete-link clustering)

