
Quiz 3: mean is 86% and average completion time 5min 18sec!

Image credit: Tenor (Queer Eye)

#yas



The week ahead
▪ Assignment 2 is out, due on Oct 5th 11:59pm (midnight)

▪ Fourth round of project seminars, available Thursday, Sep 17th

▪ Open office hours on Thursday, 7pm to 8pm
▪ https://primetime.bluejeans.com/a2m/live-event/qfsqxjec

▪ Quiz 4, Friday, Sep 18th 6am until Sep 19th 11:59am (noon)
▪ Gaussian mixture models, hierarchical clustering, density based clustering

▪ Assignment 2 Early bird special → 1 complete programming question by Wed, Sep 23rd

▪ Touch-point 1, survey for in-person version available tonight, deliverables due Sep 28th
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Coming up soon

https://primetime.bluejeans.com/a2m/live-event/qfsqxjec


CS4641B Machine Learning

Lecture 08: Gaussian Mixture 
Model
Rodrigo Borela ‣ rborelav@gatech.edu

Some of the slides are based on slides from Jiawei Han Chao Zhang, Barnabás Póczos and Mahdi Roozbahani



Outline

▪ Overview 
▪ Gaussian Mixture Model
▪ The Expectation-Maximization Algorithm

Complementary reading: Bishop PRML – Chapter 9, Sections 9.2 through 9.3.3
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Outline

▪ Overview
▪ Gaussian Mixture Model
▪ The Expectation-Maximization Algorithm
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▪ Hard Clustering: K-Means, Hierarchical Clustering, DBSCAN

Hard clustering can be difficult
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How can we overcome some of the limitations 
of K-Means?
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K-means with outliersK-means



How can we overcome some of the limitations 
of K-Means?

CS4641B Machine Learning | Fall 2020 8

Intuitively Likely K-means outcomeData



How can we overcome some of the limitations 
of K-Means (or hard clustering?)
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▪ Hard cluster assignment

𝑟𝑛𝑘 = ൝
1 if 𝑘 = argmin

𝑗
𝐱𝑛 − 𝝁𝑘 2

2

0 otherwise

Cluster assignment: 𝐑 =

𝑟11 𝑟12 ⋯ 𝑟1𝐾
𝑟21 𝑟22 ⋯ 𝑟2𝐾
⋮
𝑟𝑁1

⋮ ⋱
𝑟𝑁2 ⋯

⋮
𝑟𝑁𝐾 𝑁×𝐾

𝒓𝑛
𝑇 = 0 1 ⋯ 0



Towards soft clustering

▪ K-means
▪ Hard assignment: each object belongs to only one cluster

▪ Mixture modeling
▪ Soft assignment: probability that an object belongs to a cluster
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Outline

▪ Overview 
▪ Gaussian Mixture Model
▪ The Expectation-Maximization Algorithm
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What is a Gaussian?

▪ For 𝐷 dimensions the Gaussian distribution of a vector 𝐱T = 𝑥1, … , 𝑥𝐷 is defined by:

𝒩 𝐱|𝝁, 𝚺 =
1

2𝜋
𝐷
2 𝚺

1
2

exp −
1

2
𝐱 − 𝛍 T𝚺−𝟏 𝐱 − 𝛍

where 𝛍 is the mean (𝐷-dimensional vector) and  𝚺 is the covariance matrix of the 
Gaussian (𝐷 × 𝐷 matrix)
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▪ What if we know the data consists of a few Gaussians
▪ What if we want to fit parametric models?

What if our data is multimodal?
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What if our data is multimodal? Example

Gymnasts Swimmers Basketball players

𝑝 𝑥

𝑥 = 𝑎𝑡ℎ𝑙𝑒𝑡𝑒′𝑠
ℎ𝑒𝑖𝑔ℎ𝑡
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What if our data is multimodal? Example

𝑝 𝑥

𝑥 = 𝑎𝑡ℎ𝑙𝑒𝑡𝑒′𝑠
ℎ𝑒𝑖𝑔ℎ𝑡



Important observations

▪ Is summation of a bunch of Gaussians a Gaussian itself? Yes!

▪ 𝑝(𝑥) is a probability density function or it is also called a marginal 
distribution function.

▪ 𝑝(𝑥) = the density of selecting a data point from the probability density 
function which is created from a mixture model. Also, we know that the area 
under a density function is equal to 1. 
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Mixture models

▪ Formally a Mixture Model is the weighted sum of a number of probability density 
functions where the weights are determined by a distribution:

𝑝 𝑥 = 𝜋1𝑝1 𝑥 + 𝜋2𝑝2 𝑥 +⋯+ 𝜋𝐾𝑝𝐾 𝑥 → 𝑝 𝑥 = 

𝑘=1

𝐾

𝜋𝑘𝑝𝑘 𝑥

▪ Where σ𝑘=1
𝐾 𝜋𝑘 = 1

∫ 𝑝 𝑥 𝑑𝑥 = ∫ {𝜋1𝑝1 𝑥 𝑑𝑥 +⋯+ 𝜋𝑘𝑝𝑘 𝑥 }𝑑𝑥 = 1

∫ 𝑝 𝑥 𝑑𝑥 = 𝜋1∫ 𝑝1 𝑥 𝑑𝑥 +⋯+ 𝜋𝑘∫ 𝑝𝑘 𝑥 𝑑𝑥 = 1

𝜋1 × 1 +⋯+ 𝜋𝑘 × 1 = 1
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▪ What is the probability of a datapoint 𝑥1 in each component?
▪ How many components we have here?                                                 3
▪ How many probabilities?                                                                          3
▪ What is the sum value of the 3 probabilities for each datapoint?     1

𝜋0 𝜋1 𝜋2
𝑥

𝑥1

Mixture models
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▪ A variable can be unobserved (latent) because: 
▪ It is an imaginary quantity meant to provide some simplified and abstractive view of 

the data generation process.
▪ e.g., speech recognition models, mixture models (soft clustering)…

▪ it is a real-world object and/or phenomena, but difficult or impossible to measure
▪ e.g., the temperature of a star, causes of a disease, evolutionary ancestors …

▪ it is a real-world object and/or phenomena, but sometimes wasn’t measured, 
because of faulty sensors, etc.

▪ Discrete latent variables can be used to partition/cluster data into sub-groups.
▪ Continuous latent variables (factors) can be used for dimensionality reduction (factor 

analysis, etc).

Latent variables
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Latent variables

Gymnasts Swimmers Basketball players

𝑝 𝑥

𝑥 = 𝑎𝑡ℎ𝑙𝑒𝑡𝑒′𝑠
ℎ𝑒𝑖𝑔ℎ𝑡
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Latent variables

𝑝 𝑥

𝑥 = 𝑎𝑡ℎ𝑙𝑒𝑡𝑒′𝑠
ℎ𝑒𝑖𝑔ℎ𝑡

The latent variable becomes the Olympic sport from which we sampled the athlete’s heights



▪ What is the probability of picking a mixture component (Gaussian model)= 𝑝(𝑧) = 𝜋𝑖
▪ Picking data from that specific mixture component = 𝑝(𝑥|𝑧)
▪ 𝐳 is latent, we observe 𝑥, but 𝐳 is hidden

𝑝 𝑥, 𝐳 = 𝑝 𝑥 𝐳 𝑝(𝐳) → Generative model, joint distribution

𝑝 𝑥, 𝐳 = 𝒩(𝑥|𝜇𝑘 , 𝜎𝑘
2)𝜋𝑘

Mixtures of Gaussians

𝜋1 𝜋2 𝜋3
𝑥
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https://en.wikipedia.org/wiki/Generative_model


▪ A variable can be unobserved (latent) because: 

𝑝 𝐱 =
𝑘
𝑝(𝐱, 𝑧𝑘) =

𝑘
𝑝(𝑧𝑛𝑘)𝑝 𝐱 𝑧𝑛𝑘 = 

𝑘=1

𝐾

𝜋𝑘𝒩(𝐱|𝝁𝑘 , 𝚺𝑘)

𝑝 𝑧𝑘 = 1 = 𝜋𝑘 → 𝑝(𝐳) =ෑ
𝑘=1

𝐾

𝜋𝑘
𝑧𝑛𝑘

𝑝 𝐱|𝑧𝑘 = 1 = 𝒩 𝐱|𝝁𝑘 , 𝚺𝑘 → 𝑝 𝐱|𝐳 =ෑ

𝑘=1

𝐾

𝒩 𝐱|𝝁𝑘 , 𝚺𝑘
𝑧𝑘

▪ Why having the latent variable? The distribution that we can model using a mixture of 
Gaussian components is much more expressive than what we could have modeled 
using a single component.

Latent variable representation

CS4641B Machine Learning | Fall 2020 23



▪ We have representations of the joint 𝑝(𝐱, 𝑧𝑘) and the marginal, 𝑝(𝐱)

▪ The conditional of 𝑝 𝑧𝑘 𝐱) can be derived using Bayes rule

▪ The responsibility that a mixture component takes for explaining an observation 𝑥.

𝛾 𝑧𝑘 = 𝑝 𝑧𝑘 𝐱 =
𝑝 𝑧𝑘 𝑝 𝐱 𝑧𝑘

σ𝑗=1
𝐾 𝑝 𝑧𝑗 𝑝 𝑥 𝑧𝑗)

=
𝜋𝑘𝒩 𝐱 𝝁𝑘 , 𝚺𝑘)

σ𝑗=1
𝐾 𝜋𝑗𝒩 𝐱 𝝁𝑗 , 𝚺j)

Inferring cluster membership
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𝜋1 𝜋2 𝜋3
𝑥

▪ Let’s calculate the responsibility of the first component among the rest. Let’s call that 𝜏0

𝛾 𝑧1 = 1 =
𝒩 𝑥 𝜇1, 𝜎1

2 𝜋1

𝒩 𝑥 𝜇1, 𝜎1
2 𝜋1 +𝒩 𝑥 𝜇2, 𝜎2

2 𝜋2 +𝒩 𝑥 𝜇3, 𝜎3
2 𝜋3

𝛾 𝑧1 = 1 =
𝑝 𝑥 𝑧1 𝑝(𝑧1)

𝑝 𝑥 𝑧1 𝑝(𝑧1) + 𝑝 𝑥 𝑧2 𝑝(𝑧2) + 𝑝 𝑥 𝑧3 𝑝(𝑧3)

𝛾 𝑧1 = 1 =
𝑝(𝑥, 𝑧1)

σ𝑘=1
𝑘=3𝑝(𝑥, 𝑧𝑘)

=
𝑝(𝑥, 𝑧1)

𝑝(𝑥)
= 𝑝(𝑧1|𝑥)

▪ Given a datapoint 𝑥, what is probability of that datapoint in component 1
▪ If I have 100 datapoints and 3 components, what is the size of 𝛾?

How to calculate the probability of datapoints in 
the first component?
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What are the GMM parameters?

▪ Mean 𝜇𝑘, variance 𝜎𝑘
2 and priors 𝜋𝑘 (1D Gaussian distribution)

▪ Marginal probability distribution

𝑝 x =
𝑘
𝑝(𝑥, 𝑧𝑘) =

𝑘
𝑝 𝑥 𝑧𝑘 𝑝(𝑧𝑘 ) =

𝑘
𝒩(𝑥|𝜇𝑘 , 𝜎𝑘

2)𝜋𝑘

𝑝 𝑧𝑘 = 𝜋𝑘 Select a mixture component with probability 𝜋𝑘

𝑝 𝑥|𝑧𝑘 = 𝒩(𝑥|𝜇𝑘 , 𝜎𝑘
2)

▪ Sample from that component’s Gaussian

𝜋1 𝜋2 𝜋3
𝑥
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▪ We can use maximum likelihood estimation (MLE) to solve the problem.

𝑝 𝐱 =
𝑘
𝑝(𝐱, 𝑧𝑘) =

𝑘
𝑝(𝑧𝑘)𝑝 𝐱 𝑧𝑘 = 

𝑘=1

𝐾

𝜋𝑘𝒩(𝐱|𝝁𝑘 , 𝚺𝑘)

▪ Let’s identify a likelihood function, why?
▪ Because we use likelihood function to optimize the probabilistic model parameters!

argmax 𝑝 𝐗 = 𝑝 𝐗 𝛑, 𝝁, 𝚺 =ෑ

𝑛=1

𝑁

𝑝 𝐱𝑛|𝜃 =ෑ

𝑛=1

𝑁



𝑘=1

𝐾

𝜋𝑘𝑁(𝐱𝑛|𝝁𝑘 , 𝚺𝑘)

Well, we don’t know 𝜋𝑘 , 𝜇𝑘 , Σ𝑘
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▪ Optimization of means

ln 𝑝 𝑥|𝜋, 𝜇, Σ = 

𝑛=1

𝑁

ln 

𝑘=1

𝐾

𝜋𝑘𝒩 𝐱𝑛|𝝁𝑘 , 𝚺𝑘

𝜕 ln 𝑝 𝐱|𝝅, 𝝁, 𝚺

𝜕𝜇𝑘
= 

𝑛=1

𝑁
𝜋𝑘𝒩 𝐱𝑛| 𝝁𝑘 , 𝚺𝑘

σ𝑗 𝜋𝑗𝒩 𝐱𝑛| 𝝁𝑗 , 𝚺𝑗
Σ𝑘
−1 𝐱𝑘 − 𝝁𝑘 = 0



𝑛=1

𝑁

𝛾 𝑧𝑛𝑘 Σk
−1 𝑥𝑘 − 𝜇𝑘 = 0

𝜇𝑘 =
σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘 𝑥𝑛
σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘

Maximum likelihood of a GMM
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▪ Optimization of covariance

ln 𝑝 𝐱|𝝅, 𝝁, 𝚺 = 

𝑛=1

𝑁

ln 

𝑘=1

𝐾

𝜋𝑘𝒩 𝐱𝑛|𝝁𝑘 , 𝚺𝑘

𝚺𝑘 =
σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘 𝐱𝑛 − 𝝁𝑘 𝐱𝑛 − 𝝁𝑘

𝑇

σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘

Maximum likelihood of a GMM
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▪ Optimization of mixing term

ln 𝑝 𝐱|𝝅, 𝝁, 𝚺 + 𝜆 

𝑘=1

𝐾

𝜋𝑘 − 1



𝑛=1

𝑁
𝜋𝑘𝒩 𝐱𝑛| 𝝁𝑘, 𝚺𝑘

σ𝑗 𝜋𝑗𝒩 𝐱𝑛| 𝝁𝑗 , 𝚺𝑗
+ 𝜆 = 0

𝜋𝑘 =
σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘

𝑁

Maximum likelihood of a GMM
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Maximum likelihood of a GMM

▪ Defining 𝑁𝑘 = σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘

𝜇𝑘 =
σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘 𝑥𝑛
σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘

=
σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘 𝑥𝑛

𝑁𝑘

Σ𝑘 =
σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘 𝐱𝑛 − 𝝁𝑘 𝐱𝑛 − 𝝁𝑘

𝑇

σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘

=
σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘 𝐱𝑛 − 𝝁𝑘 𝐱𝑛 − 𝝁𝑘

𝑇

𝑁𝑘

𝜋𝑘 =
σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘

𝑁
=
𝑁𝑘
𝑁
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Outline

▪ Overview 
▪ Gaussian Mixture Model
▪ Expectation-Maximization Algorithm
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Expectation maximization

▪ Expectation Maximization (EM) is a general algorithm to deal with hidden variables.
▪ Two steps:

▪ E-Step: Fill-in hidden values using inference
▪ M-Step: Apply standard MLE method to estimate parameters

▪ EM always converges to a local minimum of the likelihood.
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EM for Gaussian Mixture Models

▪ Given a Gaussian mixture model, the goal is to maximize the likelihood function with 
respect to the parameters comprising the means and covariances of the components 
and the mixing coefficients.

▪ Initialize the means 𝜇𝑘, covariances Σ𝑘 and mixing coefficients 𝜋𝑘 and evaluate the 
initial value of the log-likelihood.

▪ E-step: Evaluate the responsibilities using the current parameter values

𝛾 𝑧𝑘 = 𝑝 𝑧𝑘 𝐱 =
𝑝 𝑧𝑘 𝑝 𝐱 𝑧𝑘

σ𝑗=1
𝐾 𝑝 𝑧𝑗 𝑝 𝐱 𝑧𝑗)

=
𝜋𝑘𝒩 𝐱 𝝁𝑘 , 𝜮𝑘)

σ𝑗=1
𝐾 𝜋𝑗𝒩 𝐱 𝝁𝑗 , 𝚺j)
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▪ M-Step: Re-estimate parameters using the current responsibilities

𝝁𝑘
𝑛𝑒𝑤 =

σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘 𝐱𝑛
σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘

=
σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘 𝐱𝑛

𝑁𝑘

𝚺𝑘
𝑛𝑒𝑤 =

σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘 𝐱𝑛 − 𝝁𝑘 𝐱𝑛 − 𝝁𝑘

𝑛𝑒𝑤 𝑇

σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘

=
σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘 𝐱𝑛 − 𝝁𝑘

𝑛𝑒𝑤 𝐱𝑛 − 𝝁𝑘
𝑛𝑒𝑤 𝑇

𝑁𝑘

𝜋𝑘
𝑛𝑒𝑤 =

σ𝑛=1
𝑁 𝛾 𝑧𝑛𝑘

𝑁
=
𝑁𝑘
𝑁

EM for Gaussian Mixture Models
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EM for Gaussian Mixture Models

Example
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EM for GMMs: Example

▪ Initialization
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EM for GMMs: Example

▪ After 1st iteration
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EM for GMMs: Example

▪ After 2nd iteration
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EM for GMMs: Example

▪ After 3rd iteration
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EM for GMMs: Example

▪ After 4th iteration
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EM for GMMs: Example

▪ After 5th iteration

CS4641B Machine Learning | Fall 2020 42



EM for GMMs: Example

▪ After 6th iteration

CS4641B Machine Learning | Fall 2020 43



EM for GMMs: Example

▪ After 20th iteration
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Relationship to K-means

▪ K-means makes hard decisions. 
▪ Each data point gets assigned to a single cluster.

▪ GMM/EM makes soft decisions.
▪ Each data point can yield a posterior 𝑝(𝑧|𝑥)

▪ K-means is a special case of EM
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General form of EM

▪ Givern a joint distribution over observed and latent variables: 𝑝(𝑥, 𝑧|𝜃)
▪ Want to maximize: 𝑝 𝑥 𝜃

1. Initialize parameters: 𝜃𝑜𝑙𝑑

2. E-step: evaluate 𝑝 𝑧 𝑥, 𝜃𝑜𝑙𝑑

3. M-step: Re-estimate parameters (based on expectation of complete-data log likelihood

𝜃𝑛𝑒𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃

𝑧

𝑝 𝑧|𝑥, 𝜃𝑜𝑙𝑑 ln 𝑝 𝑥, 𝑧|𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝔼 ln 𝑝 𝑥, 𝑧|𝜃

4. Check for convergence of parameters or likelihood
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𝑙 𝜃, 𝑥 = ln 𝑝 𝑥|𝜃

= ln

𝑧

𝑝(𝑥, 𝑧|𝜃)

= ln

𝑧

𝑞 𝑧|𝑥
𝑝 𝑥, 𝑧 𝜃

𝑞 𝑧|𝑥

≥

𝑧

𝑞 𝑧|𝑥 ln
𝑝 𝑥, 𝑧 𝜃

𝑞 𝑧|𝑥

=

𝑧

𝑞 𝑧|𝑥 ln
𝑝 𝑥, 𝑧 𝜃

𝑞 𝑧|𝑥
=

𝑧

𝑞 𝑧|𝑥 ln 𝑝 𝑥, 𝑧 𝜃 −

𝑧

𝑞 𝑧|𝑥 ln 𝑞 𝑧|𝑥 = 𝑙𝑐 𝜃, 𝑥, 𝑧 + 𝐻𝑞

▪ The first term is the expected complete log likelihood and the second term, which does not depend on 𝜃, is the 
entropy.

▪ Thus, in the M-step, maximizing with respect to 𝜃 for fixed q we only need to consider the first term:

𝜃𝑛𝑒𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃 𝑙𝑐 𝜃, 𝑥, 𝑧 𝑞𝑛𝑒𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃

𝑧

𝑞 𝑧|𝑥 ln 𝑝 𝑥, 𝑧 𝜃

Maximizing this

Will lead to maximize this

Jensen’s inequality
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