Happy Wednesday!

- Quiz 2, mean is 76% and average completion time 6min53s
- Assignment 1 due tonight Sep 9th by 11:59pm \rightarrow NO EXTENSIONS
- **Third round of project seminars**, available Thursday, Sep $10th$
- Open office hours on Thursday, 7pm to 8pm
	- <https://primetime.bluejeans.com/a2m/live-event/qfsqxjec>
- **Quiz 3, Friday, Sep 11th 6am until Sep 12th 6am**
	- K-means clustering
- Quizzes on Fridays a discussion

Highlights of foundations

- **E** Linear algebra
	- Covariance and correlation
	- **Eigendecomposition**
	- SVD
- **•** Probability theory
	- Sum rule
	- Product rule
	- Bayes theorem
- Information theory
	- **Information**
	- Entropy
	- Mutual information
	- KL Divergence
- **Optimization**
	- Objective function
	- Constraints
	- Lagrangian

Supervised just focuses on $X_{n \times d}$ and $Y_{n \times 1}$

CS4641B Machine Learning Lecture 07: Clustering Analysis and K-Means

Rodrigo Borela ‣ rborelav@gatech.edu

These slides are based on slides from Chao Zhang, Le Song and Mahdi Roozbahani

Outline

- **■** Clustering
- Distance functions
- K-Means algorithm
- Analysis of K-Means

Complementary reading: Bishop PRML – Chapter 9, Sections 9.1 through 9.1.1

Outline

▪ Clustering

- Distance functions
- K-Means algorithm
- Analysis of K-Means

Clustering images

■ Goal of clustering: Divide objects into groups such that objects within a group are more similar than those outside the group

Clustering other objects

Clustering hand digits

 5906 0.1597847 a 6654 \mathbf{c} O ъ (ဝ 6 O o, D 002 O O 024 1802 607 З O ъ -3 0 66 a u 513 863267663 З 5 Ð 4540623315120381 267 673 O 20

t-SNE embedding of the digits (time 5.26s)

[Image credit: Scikit learn](https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html)

Clustering is subjective

What is consider similar/dissimilar?

CS4641B Machine Learning | Fall 2020 10

What is clustering in general?

- You pick your similarity/dissimilarity function
- The algorithm figures out the grouping of objects based on chosen similarity/dissimilarity function
	- Points within a cluster are similar
	- Points across clusters are not so similar
- Issues for clustering
	- How to represent objects? (Vector space? Normalization?)
	- What is a similarity/dissimilarity function for your data?
	- What are the algorithm steps?

Outline

- Clustering
- Distance functions
- K-Means algorithm
- Analysis of K-Means

Properties of distance functions

- Desired properties of distance functions
- **•** Symmetry: $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$
	- Otherwise you could claim "Alex looks like Bob, but Bob looks nothing like Alex"
- **•** Positive separability: $d(\mathbf{x}, \mathbf{y}) = 0$, if and only if $\mathbf{x} = \mathbf{y}$
	- Otherwise there are objects that are different, but you cannot tell them apart
- **•** Triangular inequality: $d(\mathbf{x}, \mathbf{y}) \leq d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y})$
	- Otherwise you could claim "Alex is very like Bob, and Alex is very like Carl, but bob is very unlikely Carl"

Distance functions for vectors

■ Suppose two data points, both in \mathbb{R}^D

$$
\mathbf{x} = (x_1, x_2, \dots, x_D)^T
$$

$$
\mathbf{y} = (y_1, y_2, \dots, y_D)^T
$$

■ Euclidean distance:
$$
d(x, y) = \sqrt{\sum_{i=1}^{D} (x_i - y_i)^2}
$$

• Minkowski distance: $d(\mathbf{x}, \mathbf{y}) =$ \overline{p} $\sum_{i=1}^D (x_i - y_i)^p$

- Euclidean distance: $p = 2$
- **•** Manhattan distance: $p = 1$, $d(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{D} |x_i y_i|$
- "Inf"-distance: $p = \infty$, $d(\mathbf{x}, \mathbf{y}) = \max$ \boldsymbol{i} $|x_i - y_i|$

Example

- Euclidean distance: $d(x, y) = \sqrt{\sum_{i=1}^{D} (x_i y_i)^2} = \sqrt{(7-3)^2 + (3-6)^2} = (5$
- Manhattan distance: $d(x, y) = |7 3| + |3 6| = (7)$
- "Inf"-distance: $d(x, y) = max(|7 3|, |3 6|) = (4)$

[Curse of dimensionality](https://towardsdatascience.com/on-the-curse-of-dimensionality-b91a3a51268)

Problems with Euclidean distance

Hamming distance

- Manhattan distance is also called Hamming distance when all features are binary
	- Count the number of difference between two binary vectors
	- Example, $x, y \in \{0, 1\}^{17}$

 $d(\mathbf{x}, \mathbf{y}) = 5$

■ Transform one of the objects into the other, and measure how much effort it takes

Edit distance

■ Transform one of the objects into the other, and measure how much effort it takes

- d: deletion (cost 5)
- s: substitution (cost 1)
- i: insertion (cost 2)

(These costs are arbitrary)

CS4641B Machine Learning | Fall 2020 19

Edit distance

Outline

- Clustering
- Distance functions
- K-Means algorithm
- Analysis of K-Means

K-means clustering using intensity alone and color alone

 $\mathbb R$

Image Clusters on intensity Clusters on color

Results of K-means clustering

K-means using color alone, 11 segments (clusters)

CS4641B Machine Learning | Fall 2020 22

Image Clusters on color

* Pictures from Mean Shift: A Robust Approach toward Feature Space Analysis, by D. Comaniciu and P. Meer http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

CS4641B Machine Learning | Fall 2020 24

CCUSTER CENTER

K-means algorithm

Start!

- 1. Initialize the number of clusters and their centers
- 2. Compute the distance between each point and each cluster center.
- 3. Assign each point the cluster id of the nearest cluster center
- 4. Recompute the cluster centers based on the cluster assignment to each point
- 5. Repeat steps 2 and 3 until convergence

K-means step 1: Initialization

K-means step 2: Compute dissimilarity

K-means step 3: Define cluster assignment

K-means step 4: Recompute cluster centers

K-means step 4: Recompute cluster centers

K-means: Repeat until convergence

K-means: Repeat until convergence

Outline

- Clustering
- Distance functions
- K-Means algorithm
- Analysis of K-Means

Formal statement of the clustering problem

- **■** Given N data points, $\{x_1, x_2, ..., x_N\} \in \mathbb{R}^{N \times D}$
- **■** Find *k* cluster centers $\{\boldsymbol{\mu}_1, \boldsymbol{\mu}_2, ..., \boldsymbol{\mu}_K\} \in \mathbb{R}^{K \times D}_{\setminus \setminus}$
- And assign each data point \mathbf{x}_n to one cluster k such that $\overrightarrow{r}_{nk} = 1$ and $r_{nj} = 0$ for $j \neq k$ (1-of-K encoding)
 k (1-of-K encoding) k (1-of-K encoding)
- Such that the average square distances from each data point to its respective cluster center (distortion measure) is small:

$$
\min_{\mu_k, r_{nk}} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\mathbf{x}_n - \mu_k||_2^2
$$

Clustering is [NP-Hard](https://en.wikipedia.org/wiki/NP-hardness)

■ Given N data points, $\{x_1, x_2, ..., x_N\}$ $\in \mathbb{R}^{N \times D}$ and assign each data point x_n to one cluster k such that $r_{nk} = 1$ and $r_{nj} = 0$ for $j \neq k$ to minimize

$$
\min_{\mu_k, r_{nk}} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||\mathbf{x}_n - \mu_k||_2^2
$$

- A search problem over the space of discrete assignments
	- **•** For all N data point together, there are K^N possibilities
	- The cluster assignment determines cluster centers and vice versa

NP-Hard

■ Consider the problem of assigning a set of $N = 3$ datapoints $X = \{A, B, C\}$, to $k = 2$ clusters.

possibilities

Clustering is [NP-Hard:](https://en.wikipedia.org/wiki/NP-hardness) example

 $r_{nk}(\mathbf{x}_n - \boldsymbol{\mu}_k) = 0 \rightarrow \boldsymbol{\mu}_k =$ $\sum_{n} r_{nk} \mathbf{x}_n$ $\sum_n r_{nk}$

K-means algorithm revisited

- Perform the minimization iteratively in two steps where we first minimize our objective wrt r_{nk} keeping μ_k fixed, and then we minimize the objective wrt μ_k keeping r_{nk} fixed.
	- **E** Step 1: Keeping μ_k and computing the squared distances between \mathbf{x}_n and μ_k , we can optimize the objective simply by assigning x_n to the nearest cluster center

$$
r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} ||\mathbf{x}_n - \boldsymbol{\mu}_k||_2^2 \\ 0 & \text{otherwise} \end{cases}
$$

E Step 2: Keeping r_{nk} fixed we can optimize the objective with respect to μ_k by setting the derivative wrt to μ_k to zero

$$
\frac{\partial}{\partial \mu_k} \sum_{n=1}^N r_{nk} (\mathbf{x}_n - \mu_k)^T (\mathbf{x}_n - \mu_k) = 2 \sum_{n=1}^N r_{nk} (\mathbf{x}_n - \mu_k)
$$

K-means algorithm data structure: example $CDCD$

$$
\text{Database: } \mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{11} \\ x_{21} & x_{22} & \cdots & x_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{ND} \end{bmatrix}_{N \times D} \mathbf{x}_{N}^{T} = \begin{bmatrix} 5.0 \times 7.8 \\ 5.0 \times 7.8 \\ \vdots \\ 5.0 \times 7.8 \end{bmatrix}
$$

Cluster assignment:
$$
\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1K} \\ r_{21} & r_{22} & \cdots & r_{2K} \\ \vdots & \vdots & \ddots & \vdots \\ r_{N1} & r_{N2} & \cdots & r_{NK} \end{bmatrix}_{N \times K} \mathbf{r}_{N}^T
$$

\nCluster centers:
$$
\mathbf{M} = \begin{bmatrix} \mu_{11} & \mu_{12} & \cdots & \mu_{1D} \\ \mu_{21} & \mu_{22} & \cdots & \mu_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ \mu_{K1} & \mu_{K2} & \cdots & \mu_{KD} \end{bmatrix}_{K \times D} \mathbf{u}_{N \times D}
$$

 $8 \cdots 0.5$ BENCH CCESSFUL THROWS

SUCCESSEVL
2.0 4.5 … 1.3]
PEED BENCH

$STER$

-
-

$2\sqrt{2}$

K-means algorithm revisited

- **E** Initialize k cluster centers $\{ \mu_1, \mu_2, ..., \mu_K \}$ randomly
- Do
	- Compute dissimilarity between the data points and the cluster centers and decide cluster membership or each point \mathbf{x}_n , by assigning it to the nearest cluster center

$$
r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} ||\mathbf{x}_n - \boldsymbol{\mu}_k||_2^2 \\ 0 & \text{otherwise} \end{cases}
$$

■ Update the cluster center position

$$
\mu_k = \frac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}} \quad \text{and} \quad \mathbf{f} \in \mathbf{f}
$$

■ While any cluster center has changed

Let's ask ourselves some questions:

- Will different initializations lead to different results?
	- a. Yes
	- b. No
	- c. Sometimes
- Will the algorithm always stop after some iteration? a.) Yes
	- b. No (we have to set a maximum number of iterations)
	- c. Sometimes

CS4641B Machine Learning | Fall 2020 40

Convergence of K-means

■ Will the K-means objective oscillate?

min

 $\left\langle \right\rangle$

 $\left\langle \right\rangle$

 \boldsymbol{K}

 $k=1$

 \boldsymbol{N}

 $n=1$

 μ_k , r_{nk}

Cluster assignment step decreases the objective

▪ The minimum value of the objective is finite

■ Each iteration of the K-means algorithm decreases the objective

■ Center update step decreases the objective, because for each cluster we are only summing over the closest points

$$
r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} ||\mathbf{x}_n - \boldsymbol{\mu}_k||_2^2 \\ 0 & \text{otherwise} \end{cases}
$$

$$
\mu_k = \frac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}} \quad \mathcal{P}
$$

Time complexity

- **EXT** Assume computing distance between two instances is $O(D)$ where D is the dimensionality of the vectors.
- Reassigning clusters for all datapoints:
	- $O(KN)$ distance computations (when there is one feature)
	- \bullet $(O(KND)$ (when there is D features)
- Computing centroids: Each instance vector gets added once to some centroid (finding centroid for each feature): $O(ND)$
- **E** Assume these two steps are each done once for *I* iterations: $(O(IKND))$.

CS4641B Machine Learning | Fall 2020 41 All and Slide credit: Ray Mooney 41 All and Slide credit: Ray Mooney 41

How to initialize the K-means?

Image credit: Dileka Madushan

