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Outline

▪ Overview
▪ Unconstrained and constrained optimization
▪ Lagrange multipliers and KKT conditions
▪ Gradient descent

Complementary reading: Bishop PRML – Appendix E
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Why optimization?

▪ Machine learning and pattern recognition algorithms often focus on the minimization 
or maximization of a quantity
▪ Likelihood of a distribution given a dataset
▪ Distortion measure in clustering analysis
▪ Misclassification error while predicting labels
▪ Square distance error for a real value prediction task
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Basic optimization problem

▪ Objective or cost function 𝑓 𝐱 the quantity we are trying to optimize (maximize or 
minimize)

▪ The variables 𝑥1, 𝑥2, … , 𝑥𝑛 which can be represented in vector form as 𝐱 (Note: 𝑥𝑛
here does NOT correspond to a point in our dataset)

▪ Constraints that limit how small or big variables can be. These can be equality 
constraints, noted as ℎ𝑘 𝐱 and inequality constraints noted as 𝑔𝑗(𝐱)

▪ An optimization problem is usually expressed as: 

max
𝐱

𝑓 𝐱

𝑠. 𝑡.
𝐠 𝐱 ≥ 0

𝐡 𝐱 = 0
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Unconstrained and constrained optimization

Local minima

Local maxima

Local minima

Local maxima
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Outline

▪ Overview
▪ Unconstrained optimization
▪ Constrained optimization
▪ Lagrange multipliers and KKT conditions
▪ Gradient descent
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Lagrangian multipliers: equality constraint

Equality constraint: ℎ 𝑥1, 𝑥2 = 𝑥1 + 𝑥2 − 1 = 0

max
𝐱

1 − 𝑥1
2 − 𝑥2

2

𝑠. 𝑡. 𝑥1 + 𝑥2 − 1 = 0

Objective function: 𝑓 𝑥1, 𝑥2 = 1 − 𝑥1
2 + 𝑥2

2

∇ℎ(𝐱)

∇𝑓 𝐱

Intuition: ∇𝑓 𝐱 + 𝜇∇ℎ 𝐱 = 0

Lagrangian: 𝐿 𝐱, 𝜇 = 𝑓 𝐱 + 𝜇ℎ 𝐱 = 0
𝑠. 𝑡. 𝜇 ≠ 0

Solve ∇𝐿 𝐱, 𝜇
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Lagrangian multipliers: equality constraint

∇ℎ(𝐱)

∇𝑓 𝐱

𝐿 𝐱, 𝜇 = 1 − 𝑥1
2 + 𝑥2

2 + 𝜇 𝑥1 + 𝑥2 − 1

𝜕𝐿

𝜕𝑥1
= −2𝑥1 + 𝜇 = 0

𝜕𝐿

𝜕𝑥2
= −2𝑥2 + 𝜇 = 0

𝜕𝐿

𝜕𝜇
= 𝑥1 + 𝑥2 − 1 = 0

Solution: 𝑥1, 𝑥2, 𝜇 =
1

2
,
1

2
, 1
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Lagrangian multipliers
▪ Maximization problem
max
𝐱

𝑓 𝐱

𝑠. 𝑡.
𝑔 𝐱 ≥ 0

ℎ 𝐱 = 0

▪ Lagrangian function:
𝐿 𝐱, 𝜆, 𝜇 = 𝑓 𝐱 + 𝜆𝑔 𝐱 + 𝜇ℎ(𝐱)

▪ KKT conditions:
𝑔(𝐱) ≥ 0
𝜆 ≥ 0
𝜆𝑔 𝐱 = 0
𝜇 ≠ 0

▪ Minimization problem
min
𝐱

𝑓 𝐱

𝑠. 𝑡.
𝑔 𝐱 ≥ 0

ℎ 𝐱 = 0

▪ Lagrangian function:
𝐿 𝐱, 𝜆, 𝜇 = 𝑓 𝐱 − 𝜆𝑔 𝐱 + 𝜇ℎ(𝐱)

▪ KKT conditions:
𝑔(𝐱) ≥ 0
𝜆 ≥ 0
𝜆𝑔 𝐱 = 0
𝜇 ≠ 0

Solve the optimization problem by resolving: ∇𝐿 = 0
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Gradient descent

▪ Common in machine learning problems when not all of the data is available 
immediately or a closed form solution is computationally intractable

▪ Iterative minimization technique for differentiable functions on a domain

𝐱𝑛+1 = 𝐱𝑛 − 𝛾∇𝐹(𝐱𝑛)
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Gradient descent: Himmelblau’s function

Image credit: WikimediaImage credit: Wikimedia


