
What was the pace of the last lecture for you?
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Video credit: Clay Bavor

https://twitter.com/claybavor/status/622046522595651584?s=20


Happy Wednesday!

▪ Focus videos on Linear algebra and probability theory out Thusday by 10am
▪ LA: SVD, Eigen-decomposition, matrix calculus, norms
▪ Prob: ?

▪ Open office hours on Thursday, 7pm to 8pm
▪ https://primetime.bluejeans.com/a2m/live-event/rjsfkuku

▪ Project seminar 1, available Thursday, Aug 27th at 5pm
▪ Seminar series information available on the class website

▪ Quiz 1, Friday, Aug 28th 6am until Aug 29th 6am
▪ Linear algebra and probability
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https://primetime.bluejeans.com/a2m/live-event/rjsfkuku


These slides are based on slides from Le Song , Sam Roweis, Chao Zhang and Mahdi Roozbahani

CS4641B Machine Learning

Lecture 04: Probability theory
Rodrigo Borela ‣ rborelav@gatech.edu
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Outline

▪ Probability distributions
▪ Joint and conditional probability distributions
▪ Bayes’ rule
▪ Mean and Variance
▪ Properties of Gaussian Distribution 
▪ Maximum Likelihood Estimation

Complementary reading: Bishop PRML – Chapter 1, Sections 1.2 through 1.2.4 
and Appendix B
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Outline

▪ Probability distributions
▪ Joint and Conditional Probability Distributions
▪ Bayes’ Rule
▪ Mean and Variance
▪ Properties of Gaussian Distribution 
▪ Maximum Likelihood Estimation
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Why probability theory?

▪ It is often intractable to obtain data about an entire population of items (e.g. 
measuring every person’s height at a given age)

▪ We use statistical inference to estimate information about the distribution in 
the population, such as the mean (average) and variance (how much spread 
there is in the data) from samples

▪ With samples of finite size or noise in measurements comes uncertainty
about the true mean/variance about the population

▪ Probability theory allows us to quantify different forms of uncertainty
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Probability world views

▪ Frequentist (classical) definition: long-term frequencies of repeatable 
random events (e.g. result of flipping a coin). 

▪ Bayesian definition: more general concept, in which the probabilities 
represent the uncertainty in any event or hypothesis (not just one that can 
be repeated a number of times), for example the probability of becoming an 
opera singer by the end of the semester.

In this class we will work with the frequentist (classical) approach
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Three key ingredients in probability theory

▪ A sample space is a collection of all possible outcomes
▪ Random variables 𝑋 represent outcomes in the sample space
▪ Probability of a random variable to happen 𝑝 𝑥 = 𝑝 𝑋 = 𝑥 , 𝑝 𝑥 ≥ 0
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Probability

▪ A sample space S is the set of all possible outcomes of a conceptual or 
physical, repeatable experiment. (S can be finite or infinite)
▪ Example, S may be the set of all possible outcomes of a dice roll: 

1 2 3 4 5 6
▪ Example, S may be the set of all possible nucleotides of a DNA site: 

𝐴 𝐶 𝐺 𝑇
▪ Example, S may be the set of all possible time-space positions of an 

aircraft on a radar screen.
▪ An event A is any subset of S

▪ Seeing “1” or “6” in a dice roll; observing a “G” at a DNA site



෍

𝑥𝜖𝐴

𝑝 𝑥 = 1

න𝑝(𝑥)𝑑𝑥 = 1
𝑥
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Types of variables

▪ Discrete variable  
▪ Example: Coin flip (integer)
▪ Discrete probability distribution (e.g. Bernoulli) 
▪ Probability mass function
▪ Probability value

▪ Continuous variable 
▪ Example: Temperature (real number)
▪ Continuous probability distribution (e.g. Gaussian) 
▪ Probability density function
▪ Density or likelihood value



▪ Is my variable discrete or continuous?
▪ How can I define the stochastic process generating the data?
▪ How much information do I have about the data?
▪ Can I visualize my data? If so, can I represent it as a parametric distribution 

or should I opt for a non-parametric distribution?
▪ What does the literature on this type of data suggests?
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What distribution to model my data with?



▪ Bernoulli distribution (single trial is conducted)

ቊ
1 − 𝜃 𝑓𝑜𝑟 𝑥 = 0
𝜃 𝑓𝑜𝑟 𝑥 = 1

▪ Binomial distribution (𝑘 number of successes, 𝑛 − 𝑘 number of failures)

𝑃 𝑋 = 𝑘 =
𝑛
𝑘

𝜃𝑘 1 − 𝜃 𝑛−𝑘

𝑛
𝑘

the total number of ways of selecting k distinct combinations of n trials 

irrespective of order
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Discrete probability functions
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Continuous probability functions

▪ Uniform density function

𝑓 𝑥 = ቐ
1

𝑏 − 𝑎
for 𝑎 ≤ 𝑥 ≤ 𝑏

0 otherwise

▪ Exponential density function

𝑓 𝑥 =
1

𝜇
𝑒
−
𝑥
𝜇 , for 𝑥 ≥ 0

▪ Gaussian density function

𝑓 𝑥 =
1

2𝜋𝜎
exp−

𝑥 − 𝜇 2

2𝜎2
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Outline

▪ Probability Distributions
▪ Joint and Conditional Probability Distributions
▪ Bayes’ Rule
▪ Mean and Variance
▪ Properties of Gaussian Distribution 
▪ Maximum Likelihood Estimation
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Joint distribution

▪ Key concept: two or more random variables may interact. Thus, the 
probability of one taking on a certain value depends on which values the 
others are taking

▪ We call this a join ensemble and write:
𝑝 𝑥, 𝑦 = prob(𝑋 = 𝑥 and 𝑌 = 𝑦)
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Marginal distribution

▪ We can “sum out” part of a joint distribution to get the marginal distribution 
of a subset of variables:

𝑝 𝑥 = σ𝑦 𝑝 𝑥, 𝑦 (discrete variables)

or 
𝑝 𝑥 = 𝑝׬ 𝑥, 𝑦 𝑑𝑦 (continuous variables)

▪ This is like adding slices of the table together
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Conditional distribution

▪ If we know that some event has occurred, it changes our belief about the 
probability of other events

▪ This is like taking a “slice” through the joint table

𝑝 𝑥 𝑦) =
𝑝 𝑥, 𝑦

𝑝 𝑦
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Independence and conditional independence

▪ Two variables are independent iff their joint factors are
𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑝 𝑦

▪ Two variables are conditionally independent given a third one if for all values 
of the conditioning variable, the resulting slice factors:

𝑝 𝑥, 𝑦 𝑧 = 𝑝 𝑥 𝑧 𝑝 𝑦 𝑧 , ∀𝑧
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Example: conditional independence

▪ 𝑝 𝑣𝑖𝑟𝑢𝑠 𝑐𝑜𝑓𝑓𝑒𝑒 = 𝑝 𝑣𝑖𝑟𝑢𝑠 ,  iff virus is independent of drinking coffee
▪ 𝑝 𝑓𝑙𝑢 𝑣𝑖𝑟𝑢𝑠, 𝑐𝑜𝑓𝑓𝑒𝑒 = 𝑝 𝑓𝑙𝑢|𝑣𝑖𝑟𝑢𝑠 ,  iff flu is independent of drinking 

coffee, given the virus
▪ 𝑝 ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒 𝑓𝑙𝑢, 𝑣𝑖𝑟𝑢𝑠, 𝑐𝑜𝑓𝑓𝑒𝑒 = 𝑝 ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒|𝑓𝑙𝑢, 𝑐𝑜𝑓𝑓𝑒𝑒 ,  iff

headache is independent of virus, given drinking coffee and the flu

▪ We can write the joint distribution:
𝑝 ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒, 𝑓𝑙𝑢, 𝑣𝑖𝑟𝑢𝑠, 𝑐𝑜𝑓𝑓𝑒𝑒 = 𝑝 ℎ 𝑓, 𝑣, 𝑐 𝑝 𝑓 𝑣, 𝑐 𝑝 𝑣 𝑐 𝑝 𝑐

▪ Assuming the above independence:
𝑝 ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒, 𝑓𝑙𝑢, 𝑣𝑖𝑟𝑢𝑠, 𝑐𝑜𝑓𝑓𝑒𝑒 = 𝑝 ℎ 𝑓, 𝑐 𝑝 𝑓 𝑣 𝑝 𝑣 𝑝 𝑐



Y = Flip a coinX = Throw a die
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Example: Joint, conditional and marginal

▪ 𝑋 and 𝑌 are random variables
▪ 𝑁 = 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠
▪ 𝑛𝑖𝑗 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒
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Example: Joint, conditional and marginal

𝑛𝑖𝑗 = 3 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 5 𝑛𝑖𝑗 = 1 𝑛𝑖𝑗 = 5 20

𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 1 15

5 6 6 7 5 6 𝑁 = 35

𝑋
𝑌

𝑦𝑗=1 = ℎ𝑒𝑎𝑑

𝑦𝑗=2 = 𝑡𝑎𝑖𝑙

𝑥𝑖=1 = 1 𝑥𝑖=2 = 2 𝑥𝑖=3 = 3 𝑥𝑖=4 = 4 𝑥𝑖=5 = 5 𝑥𝑖=6 = 6 𝑐𝑗

𝑐𝑖
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Definitions (discrete variables)

▪ Marginal probability

𝑝(𝑋 = 𝑥𝑖) =
𝑐𝑖
𝑁

▪ Join probability

𝑝(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗) =
𝑛𝑖𝑗

𝑁
▪ Conditional probability

𝑝(𝑌 = 𝑦𝑗|𝑋 = 𝑥𝑖) =
𝑛𝑖𝑗

𝑐𝑖
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Definitions (discrete variables)

▪ Sum rule

𝑝 𝑋 = 𝑥𝑖 =෍

𝑗=1

𝐿

𝑝 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 → 𝑝 𝑋 =෍

𝑌

𝑃(𝑋, 𝑌)

▪ Product rule

𝑝 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 =
𝑛𝑖𝑗

𝑁
=
𝑛𝑖𝑗

𝑐𝑖

𝑐𝑖
𝑁
= 𝑝 𝑌 = 𝑦𝑗 𝑋 = 𝑥𝑖 𝑝 𝑋 = 𝑥𝑖

𝑝 𝑋, 𝑌 = 𝑝 𝑌 𝑋 𝑝 𝑋 = 𝑝 𝑋 𝑌 𝑝(𝑌)
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Example: Joint, conditional and marginal

𝑛𝑖𝑗 = 3 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 5 𝑛𝑖𝑗 = 1 𝑛𝑖𝑗 = 5 20

𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 1 15

5 6 6 7 5 6 𝑁 = 35

X

Y
𝑦𝑗=1 = ℎ𝑒𝑎𝑑

𝑦𝑗=2 = 𝑡𝑎𝑖𝑙

𝑥𝑖=1 = 1 𝑥𝑖=2 = 2 𝑥𝑖=3 = 3 𝑥𝑖=4 = 4 𝑥𝑖=5 = 5 𝑥𝑖=6 = 6 𝑐𝑗

𝑐𝑖

𝑝 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 =
𝑛𝑖𝑗

𝑁
, 𝑝 𝑋 = 1, 𝑌 = 𝑡𝑎𝑖𝑙 =

3

35
, 𝑝 𝑋 = 5, 𝑌 = ℎ𝑒𝑎𝑑 =

4

35
Joint probability:

Conditional probability:

Marginal probability:

𝑝(𝑌 = 𝑦𝑗|𝑋 = 𝑥𝑖) =
𝑛𝑖𝑗

𝑐𝑖
, 𝑝(𝑌 = ℎ𝑒𝑎𝑑|𝑋 = 3) =

4

6
, 𝑝(𝑋 = 6|𝑌 = 𝑡𝑎𝑖𝑙) =

5

20

𝑝 𝑋 = 𝑥𝑖 =
𝑐𝑖

𝑁
, 𝑝 𝑋 = 6 =

6

35
, 𝑝 𝑌 = ℎ𝑒𝑎𝑑 =

15

35
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Example: Joint, conditional and marginal

𝑛𝑖𝑗 = 3 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 5 𝑛𝑖𝑗 = 1 𝑛𝑖𝑗 = 5 20

𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 2 𝑛𝑖𝑗 = 4 𝑛𝑖𝑗 = 1 15

5 6 6 7 5 6 𝑁 = 35

X

Y
𝑦𝑗=1 = ℎ𝑒𝑎𝑑

𝑦𝑗=2 = 𝑡𝑎𝑖𝑙

𝑥𝑖=1 = 1 𝑥𝑖=2 = 2 𝑥𝑖=3 = 3 𝑥𝑖=4 = 4 𝑥𝑖=5 = 5 𝑥𝑖=6 = 6 𝑐𝑗

𝑐𝑖

𝑝 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 = 𝑝 𝑌 = 𝑦𝑗 𝑋 = 𝑥𝑖 𝑝 𝑋 = 𝑥𝑖

𝑝 𝑋 = 1, 𝑌 = 𝑡𝑎𝑖𝑙 = 𝑝 𝑌 = 𝑡𝑎𝑖𝑙 𝑋 = 1 𝑝 𝑋 = 1 =
3

5
⋅
5

35
=

3

35

Product rule:

Sum rule:
𝑝 𝑋 = 𝑥𝑖 =෍

𝑗=1

𝐿

𝑝 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗

𝑝 𝑋 = 6 = 𝑝 𝑋 = 6, 𝑌 = 𝑡𝑎𝑖𝑙 + 𝑝 𝑋 = 6, 𝑌 = ℎ𝑒𝑎𝑑 =
5

35
+

1

35
=

6

35



CS4641B Machine Learning | Fall 2020 27

Bayes’ rule (theorem)

▪ 𝑝 𝑋 𝑌 = Fraction of the worlds in which X is true given that Y is also true

▪ For example:
▪ 𝐻 = “having a headache”
▪ 𝐹 = “Coming down with the flu”
▪ 𝑃(ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒|𝑓𝑙𝑢) = fraction of flu-inflicted worlds in which you have a 

headache. How to calculate?

▪ Definition

𝑝 𝑥 𝑦 =
𝑝 𝑥, 𝑦

𝑝(𝑦)
=
𝑝 𝑦 𝑥)𝑝 𝑥

𝑝(𝑦)
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Bayes’ rule

𝑝 ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒 𝑓𝑙𝑢 =
𝑝 ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒, 𝑓𝑙𝑢

𝑝 𝑓𝑙𝑢
=
𝑝 𝑓𝑙𝑢|ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒 𝑝(ℎ𝑒𝑎𝑑𝑎𝑐ℎ𝑒)

𝑝 𝑓𝑙𝑢

▪ Other cases:

𝑝 𝑌 𝑋 =
𝑝 𝑋 𝑌)𝑝(𝑌)

𝑝 𝑋 𝑌)𝑝 𝑌 +𝑝 𝑋 ¬𝑌)𝑝(¬𝑌)
(binary variables)

𝑝 𝑌 𝑋, 𝑍 =
𝑝 𝑋 𝑌, 𝑍 𝑝 𝑌, 𝑍

𝑝(𝑋, 𝑍)
=

𝑝 𝑋 𝑌, 𝑍)𝑝(𝑌, 𝑍)

𝑝 𝑋 𝑌, 𝑍)𝑝 𝑌, 𝑍 + 𝑝 𝑋 ¬𝑌, 𝑍)𝑝(¬𝑌, 𝑍)

𝑝 𝑌 = 𝑦𝑖 𝑋 =
𝑝 𝑋 𝑌)𝑝(𝑌)

σ𝑦𝑖
𝑝 𝑋 𝑌=𝑦𝑖)𝑝 𝑌=𝑦𝑖

(multiple discrete states)
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Outline

▪ Probability Distributions
▪ Joint and Conditional Probability Distributions
▪ Bayes’ Rule
▪ Mean and Variance
▪ Properties of Gaussian Distribution 
▪ Maximum Likelihood Estimation
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Mean and variance

▪ Expectation: the mean value, center of mass, first moment:

𝐸𝑥 𝑔 𝑥 = න
−∞

∞

𝑔 𝑥 𝑝𝑥 𝑥 𝑑𝑥 = 𝜇

▪ N-th moment: 𝑔(𝑥) = 𝑥𝑛

▪ N-th central moment: 𝑔(𝑥) = (𝑥 − 𝜇)𝑛
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Mean and variance

▪ Mean (first moment)

𝐸𝑥 𝑋 = න
−∞

∞

𝑥𝑝𝑥 𝑥 𝑑𝑥

▪ Properties
▪ 𝐸 𝛼𝑋 = 𝛼𝐸 𝑋
▪ 𝐸 𝛼 + 𝑋 = 𝛼 + 𝐸 𝑋

▪ Variance (second central moment)
𝑣𝑎𝑟 𝑋 = 𝐸𝑥 𝑋 − 𝐸𝑥 𝑋 2 = 𝐸𝑥 𝑋2 − 𝐸𝑥 𝑋 2

▪ Properties
▪ 𝑣𝑎𝑟 𝛼𝑋 = 𝛼2𝑉𝑎𝑟 𝑋
▪ 𝑣𝑎𝑟 𝛼 + 𝑋 = 𝑉𝑎𝑟 𝑋



CS4641B Machine Learning | Fall 2020 32

For joint distributions

▪ Expectation 
𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸[𝑌]

▪ Covariance

𝑐𝑜𝑣 𝑋, 𝑌 = 𝐸 𝑋 − 𝐸𝑋 𝑋 𝑌 − 𝐸𝑦 𝑌 = 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

𝑣𝑎𝑟 𝑋 + 𝑌 = 𝑉𝑎𝑟 𝑋 + 2𝑐𝑜𝑣 𝑋, 𝑌 + 𝑉𝑎𝑟(𝑌)
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Outline

▪ Probability Distributions
▪ Joint and Conditional Probability Distributions
▪ Bayes’ Rule
▪ Mean and Variance
▪ Properties of Gaussian Distribution 
▪ Maximum Likelihood Estimation



Probability versus likelihood
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Gaussian distribution

https://www.quora.com/What-is-the-difference-between-probability-and-likelihood-1
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Probability and likelihood

▪ …
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Multivariate Gaussian Distribution

𝑝 𝐱|𝛍, 𝚺 =
1

2𝜋
𝑛
2 𝚺

1
2

exp −
1

2
𝐱 − 𝛍 T𝚺 𝐱 − 𝛍

▪ Moment parametrization:
▪ 𝛍 = 𝐸 𝐗
▪ 𝚺 = 𝑐𝑜𝑣 𝐗 = 𝐸 𝐗 − 𝛍 𝐗 − 𝛍 T

▪ Tons of applications (Mixture of gaussians, Bayesian linear regression, PPCA, 
Kalman filter)
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Properties of Gaussian distribution

▪ The linear transform of a Gaussian r.v. is a Gaussian. Remember that no matter how x 
is distributed
▪ 𝐸 𝐀𝐱 + 𝐛 = 𝐀𝐸 𝐱 + 𝐛
▪ 𝑐𝑜𝑣 𝐀𝐱 + 𝐛 = 𝐀𝑐𝑜𝑣 𝐱 𝐀𝑇

▪ This means that for Gaussian distributed quantities

▪ 𝐱~𝒩 𝛍, 𝚺 → 𝐀𝐱 + 𝐛~𝒩 𝐀𝛍 + 𝐛,𝐀𝚺𝐀T

▪ The sum of two independent Gaussian r.v. is a Gaussian
▪ 𝑌 = 𝑋1 + 𝑋2, 𝑋1 ⊥ 𝑋2 → 𝜇𝑦 = 𝜇1 + 𝜇2, Σ𝑦 = Σ1 + Σ2

▪ The multiplication of two Gaussian functions is another Gaussian function (no longer 
normalized)
▪ 𝒩 𝑎, 𝐴 𝒩 𝑏, 𝐵 ∝ 𝒩 𝑐, 𝐶
▪ Where 𝐶 = 𝐴−1 + 𝐵−1 −1, 𝑐 = 𝐶𝐴−1𝑎 + 𝐶𝐵−1𝑏
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Probability mass function of a biased dice Let’s say, I am going to get 
a sample from this pmf
having a size of 𝒏 = 𝟒

𝑆1 = 1,1,1,6 ⇒ 𝐸 𝑆1 = 2.25

𝑆2 = 1,1,3,6 ⇒ 𝐸 𝑆2 = 2.75

⋮

𝑆𝑚 = 1,4,6,6 ⇒ 𝐸 𝑆𝑚 = 4.25

3.52.51 4.5 6

According to CLT, it will follow a bell curve distribution 
(normal distribution)
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Central limit theorem
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Outline

▪ Probability Distributions
▪ Joint and Conditional Probability Distributions
▪ Bayes’ Rule
▪ Mean and Variance
▪ Properties of Gaussian Distribution 
▪ Maximum Likelihood Estimation
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Maximum likelihood estimation

▪ Probability: inferring probabilistic quantities for data given fixed models (e.g. 
prob. of events, marginals, conditionals, etc.)

▪ Statistics: inferring a model given fixed data observations (e.g. clustering, 
classification, regression)

▪ Main assumption in MLE:
Independent and identically distributed random variables
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Maximum likelihood estimation

▪ For Bernoulli (i.e. flip a coin):
𝑓 𝑥𝑖|𝜃 = 𝜃𝑥𝑖 1 − 𝜃 1−𝑥𝑖 𝑥𝑖 ∈ 0,1 𝑜𝑟 {ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙}

▪ Objective function (what we are trying to maximize): 
𝐿 𝒟| 𝜃 = 𝑝 𝑋 = 𝑥1, 𝑋 = 𝑥2, 𝑋 = 𝑥3, … , 𝑋 = 𝑥𝑛

applying the i.i.d. assumption
= 𝑝 𝑋 = 𝑥1 𝑝 𝑋 = 𝑥2 …𝑝 𝑋 = 𝑥𝑛

We can then rewrite:

𝐿 𝒟| 𝜃 =ෑ

𝑖=1

𝑛

𝑓 𝑥𝑖|𝜃 =ෑ

𝑖=1

𝑛

𝜃𝑥𝑖 1 − 𝜃 1−𝑥𝑖
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Maximum likelihood estimation

𝐿 𝒟| 𝜃 = 𝜃𝑥1 1 − 𝜃 1−𝑥1 × 𝜃𝑥2 1 − 𝜃 1−𝑥2 …× 𝜃𝑥𝑛 1 − 𝜃 1−𝑥𝑛

= 𝜃σ 𝑥𝑖 1 − 𝜃 σ(1−𝑥𝑖)

▪ We don’t like multiplication, let’s convert it into summation by taking the log:

𝐿 𝒟| 𝜃 = 𝑝σ 𝑥𝑖 1 − 𝑝 σ(1−𝑥𝑖)

𝑙𝑜𝑔𝐿 𝒟| 𝜃 = 𝑙 𝒟| 𝜃 = log 𝜃 ෍

𝑖=1

𝑛

𝑥𝑖 + log 1 − 𝜃 ෍

𝑖=1

𝑛

(1 − 𝑥𝑖)
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Maximum likelihood estimation

▪ How to optimize p?
𝜕𝑙 𝒟 𝜃

𝜕𝜃
= 0

σ𝑖=1
𝑛 𝑥𝑖
𝜃

−
σ𝑖=1
𝑛 (1 − 𝑥𝑖)

1 − 𝜃
= 0

𝜃 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖


