What was the pace of the last lecture for you?

[Video credit: Clay Bavor](https://twitter.com/claybavor/status/622046522595651584?s=20)

Happy Wednesday!

- Focus videos on Linear algebra and probability theory out Thusday by 10am
	- LA: SVD, Eigen-decomposition, matrix calculus, norms
	- Prob: ?
- Open office hours on Thursday, 7pm to 8pm
	- <https://primetime.bluejeans.com/a2m/live-event/rjsfkuku>
- **Project seminar 1**, available Thursday, Aug $27th$ at 5pm
	- Seminar series information available on the class website
- Quiz 1, Friday, Aug 28th 6am until Aug 29th 6am
	- **E** Linear algebra and probability

These slides are based on slides from Le Song , Sam Roweis, Chao Zhang and Mahdi Roozbahani

CS4641B Machine Learning Lecture 04: Probability theory

Rodrigo Borela • rborelav@gatech.edu

Outline

- Probability distributions
- Joint and conditional probability distributions
- Bayes' rule
- Mean and Variance
- **Properties of Gaussian Distribution**
- Maximum Likelihood Estimation

Complementary reading: Bishop PRML – Chapter 1, Sections 1.2 through 1.2.4 and Appendix B

Outline

- **E** Probability distributions
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- **Properties of Gaussian Distribution**
- **Maximum Likelihood Estimation**

Why probability theory?

- It is often intractable to obtain data about an entire population of items (e.g. measuring every person's height at a given age)
- We use statistical inference to estimate information about the distribution in the population, such as the mean (average) and variance (how much spread there is in the data) from samples
- With samples of finite size or noise in measurements comes uncertainty about the true mean/variance about the population
- Probability theory allows us to quantify different forms of uncertainty

Probability world views

- **Example 15 Frequentist (classical) definition:** long-term frequencies of repeatable random events (e.g. result of flipping a coin).
- Bayesian definition: more general concept, in which the probabilities represent the uncertainty in any event or hypothesis (not just one that can be repeated a number of times), for example the probability of becoming an opera singer by the end of the semester.

In this class we will work with the frequentist (classical) approach

Three key ingredients in probability theory

- A sample space is a collection of all possible outcomes
- **•** Random variables X represent outcomes in the sample space
- **•** Probability of a random variable to happen $p(x) = p(X = x)$, $p(x) \ge 0$

Probability

- A sample space S is the set of all possible outcomes of a conceptual or physical, repeatable experiment. (S can be finite or infinite) Example, S may be the set of all possible outcomes of a dice roll:
	- $(1 \t2 \t3 \t4 \t5 \t6)$
	- Example, S may be the set of all possible nucleotides of a DNA site: $(A \quad C \quad G \quad T)$
	- Example, S may be the set of all possible time-space positions of an aircraft on a radar screen.
- \blacksquare An event A is any subset of S
	- Seeing "1" or "6" in a dice roll; observing a "G" at a DNA site

$$
\sum_{x \in A} p(x) = 1
$$

$$
\int_{x} p(x)dx = 1
$$

Types of variables

▪ Discrete variable

- Example: Coin flip (integer)
- Discrete probability distribution (e.g. Bernoulli)
- **•** Probability mass function
- **E** Probability value

- Continuous variable
	- Example: Temperature (real number)
	- Continuous probability distribution (e.g. Gaussian)
	- **•** Probability density function
	- Density or likelihood value

What distribution to model my data with?

- Is my variable discrete or continuous?
- How can I define the stochastic process generating the data?
- How much information do I have about the data?
- Can I visualize my data? If so, can I represent it as a parametric distribution or should I opt for a non-parametric distribution?
- What does the literature on this type of data suggests?

$$
\begin{cases} 1 - \theta & \text{for } x = 0 \\ \theta & \text{for } x = 1 \end{cases}
$$

■ Binomial distribution (k number of successes, $n - k$ number of failures) $P(X = k) =$ \overline{n} \boldsymbol{k} $\theta^k(1-\theta)^{n-k}$

 \overline{n} \boldsymbol{k} the total number of ways of selecting k distinct combinations of n trials irrespective of order

Discrete probability functions

■ Bernoulli distribution (single trial is conducted)

Continuous probability functions

■ Uniform density function

$$
f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{otherwise} \end{cases}
$$

■ Exponential density function

$$
f(x) = \frac{1}{\mu} e^{-\frac{x}{\mu}}, \text{for } x \ge 0
$$

■ Gaussian density function

$$
f(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}
$$

 \boldsymbol{b}

Outline

- **Probability Distributions**
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- **Properties of Gaussian Distribution**
- **Maximum Likelihood Estimation**

Joint distribution

- Key concept: two or more random variables may interact. Thus, the probability of one taking on a certain value depends on which values the others are taking
- We call this a join ensemble and write:

$$
p(x, y) = prob(X = x \text{ and } Y = y)
$$

Marginal distribution

■ We can "sum out" part of a joint distribution to get the marginal distribution of a subset of variables:

> $p(x) = \sum_{y} p(x, y)$ (discrete variables) or $p(x) = \int p(x, y) dy$ (continuous variables)

■ This is like adding slices of the table together

Conditional distribution

- If we know that some event has occurred, it changes our belief about the probability of other events
- This is like taking a "slice" through the joint table

$$
p(x|y) = \frac{p(x, y)}{p(y)}
$$

Independence and conditional independence

■ Two variables are independent iff their joint factors are $p(x, y) = p(x)p(y)$

■ Two variables are conditionally independent given a third one if for all values of the conditioning variable, the resulting slice factors: $p(x, y|z) = p(x|z)p(y|z)$, $\forall z$

Example: conditional independence

- **•** $p(virus|cofree) = p(virus)$, iff virus is independent of drinking coffee
- **•** $p(flu|virus, coffee) = p(flu|virus)$, iff flu is independent of drinking coffee, given the virus
- \bullet p(headache|flu, virus, coffee) = p(headache|flu, coffee), iff headache is independent of virus, given drinking coffee and the flu
- We can write the joint distribution: $p(headache, flu, virus, coffee) = p(h|f, v, c)p(f|v, c)p(v|c)p(c)$
- Assuming the above independence: $p(headache, flu, virus, coffee) = p(h|f, c)p(f|v)p(v)p(c)$

Example: Joint, conditional and marginal

- \blacksquare X and Y are random variables
- \blacksquare N = total number of trials
- n_{ij} = number of occurrence

 $X = Throw$ a die $Y = Flip$ a coin

CS4641B Machine Learning | Fall 2020 22

Example: Joint, conditional and marginal

$$
Y
$$
\n
$$
Y_{j=1} = head
$$
\n
$$
p_{j=2} = tail
$$
\n
$$
N_{i=1} = 1
$$
\n
$$
x_{i=2} = 2
$$
\n
$$
x_{i=3} = 3
$$
\n
$$
x_{i=4} = 4
$$
\n
$$
x_{i=5}
$$
\n
$$
n_{ij} = 3
$$
\n
$$
n_{ij} = 4
$$
\n
$$
n_{ij} = 2
$$

Definitions (discrete variables)

■ Marginal probability

$$
p(X = x_i) = \frac{c_i}{N}
$$

▪ Join probability

$$
p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}
$$

■ Conditional probability

$$
p(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}
$$

Y $P(X, Y)$

$X = x_i p(X = x_i)$

Definitions (discrete variables)

▪ Sum rule

$$
p(X = x_i) = \sum_{j=1}^{L} p(X = x_i, Y = y_j) \rightarrow p(X) = \sum_{Y}
$$

▪ Product rule

$$
p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \frac{c_i}{N} = p(Y = y_j | X_j)
$$

 $p(X, Y) = p(Y|X)p(X) = p(X|Y)p(Y)$

CS4641B Machine Learning | Fall 2020 25

Example: Joint, conditional and marginal X

 = 3 = 4 = 2 = 5 = 1 = 5 20 = 2 = 2 = 4 = 2 = 4 = 1 15 5 6 6 7 5 6 = 35 Y =1 = ℎ =2 = =1 = 1 =2 = 2 =3 = 3 =4 = 4 =5 = 5 =6 = 6

 $p(X = x_i, Y = y_j) =$ n_{ij} \boldsymbol{N} , $p(X = 1, Y = tail) =$ 3 35 Joint probability:

Conditional probability: $p(Y = y_j | X = x_i) =$ n_{ij} c_i , $p(Y = head | X = 3) =$

Marginal probability: $p(X = x_i) =$ c_i \boldsymbol{N} , $p(X = 6) =$ 6 35 $, p(Y = head) =$

$$
p(X = 5, Y = head) = \frac{4}{35}
$$

$$
= \frac{4}{6}, p(X = 6|Y = tail) = \frac{5}{20}
$$

15 35

CS4641B Machine Learning | Fall 2020 26

Example: Joint, conditional and marginal X

 = 3 = 4 = 2 = 5 = 1 = 5 20 = 2 = 2 = 4 = 2 = 4 = 1 15 5 6 6 7 5 6 = 35 Y =1 = ℎ =2 = =1 = 1 =2 = 2 =3 = 3 =4 = 4 =5 = 5 =6 = 6

 $p(X = x_i, Y = y_j) = p(Y = y_j | X = x_i)p(X = x_i)$ $p(X = 1, Y = tail) = p(Y = tail|X = 1)p(X = 1) = 1$ Product rule:

5

35

35

Sum rule:

$$
p(X = x_i) = \sum_{j=1}^{L} p(X = x_i, Y = y_j)
$$

 $p(X = 6) = p(X = 6, Y = tail) + p(X = 6, Y = h\epsilon)$

$$
ead) = \frac{5}{35} + \frac{1}{35} = \frac{6}{35}
$$

= $\frac{3}{5} \cdot \frac{5}{35} = \frac{3}{35}$

Bayes' rule (theorem)

- \bullet $p(X|Y)$ = Fraction of the worlds in which X is true given that Y is also true
- For example:
	- $H =$ "having a headache"
	- $F =$ "Coming down with the flu"
	- **•** $P(headache|flu) = fraction of flu-inflicted worlds in which you have a$ headache. How to calculate?
- Definition

$$
p(x|y) = \frac{p(x,y)}{p(y)} = \frac{p(y|x)p(x)}{p(y)}
$$

Bayes' rule

$$
p(headache|flu) = \frac{p(headache, flu)}{p(lu)} = \frac{p(lulu)}{p(lu)}
$$

\n- \n Other cases:\n
$$
p(Y|X) = \frac{p(X|Y)p(Y)}{p(X|Y)p(Y) + p(X|\neg Y)p(\neg Y)}
$$
\n (bina)
\n- \n
$$
p(Y|X, Z) = \frac{p(X|Y, Z)p(Y, Z)}{p(X, Z)} = \frac{p(X|Y)p(Y, Z)}{p(X|Y, Z)p(Y, Z)}
$$
\n (multiple (multiple (x|Y) = x))\n
\n

$\emph{leadache})$ p(headache) $p(flu)$

ry variables)

$(Y, Z)p(Y, Z)$ $\overline{+ p(X|\neg Y,Z)p(\neg Y,Z)}$

e discrete states)

Outline

- **Probability Distributions**
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- **Properties of Gaussian Distribution**
- **Maximum Likelihood Estimation**

Mean and variance

- Expectation: the mean value, center of mass, first moment: $E_x[g(x)] =$ −∞ ∞ $g(x)p_x(x)dx = \mu$
- **•** N-th moment: $g(x) = x^n$
- N-th central moment: $g(x) = (x \mu)^n$

Mean and variance

■ Mean (first moment)

$$
E_x[X] = \int_{-\infty}^{\infty} x p_x(x) dx
$$

▪ Properties

$$
\bullet \quad E[\alpha X] = \alpha E[X]
$$

- $E[\alpha + X] = \alpha + E[X]$
- Variance (second central moment) $var(X) = E_x[(X - E_x[X])^2] = E_x[X^2] - E_x[X]^2$
- Properties

$$
\bullet \quad var(\alpha X) = \alpha^2 Var(X)
$$

 $var(\alpha + X) = Var(X)$

CS4641B Machine Learning | Fall 2020 31

For joint distributions

Expectation

 $E[X + Y] = E[X] + E[Y]$

▪ Covariance

$$
cov(X, Y) = E\left[(X - E_X[X]) (Y - E_y(Y)) \right] =
$$

$$
var(X + Y) = Var(X) + 2cov(X, Y)
$$

$E[XY] - E[X]E[Y]$ $+ Var(Y)$

Outline

- **Probability Distributions**
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- **Properties of Gaussian Distribution**
- **Maximum Likelihood Estimation**

[Probability versus likelihood](https://www.quora.com/What-is-the-difference-between-probability-and-likelihood-1)

Gaussian distribution

Probability density function

Multivariate Gaussian Distribution

$$
p(\mathbf{x}|\mathbf{\mu}, \Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mathbf{\mu})\right\}
$$

■ Moment parametrization:

- $\mathbf{\Sigma} = cov(\mathbf{X}) = E[(\mathbf{X} \mathbf{\mu})(\mathbf{X} \mathbf{\mu})^{\mathrm{T}}]$
- Tons of applications (Mixture of gaussians, Bayesian linear regression, PPCA, Kalman filter)

$$
\bullet \quad \mu = E(\mathbf{X})
$$

Properties of Gaussian distribution

- The linear transform of a Gaussian r.v. is a Gaussian. Remember that no matter how x is distributed
	- $E(Ax + b) = AE(x) + b$
	- **•** $cov(Ax + b) = Acov(x)A^T$
- This means that for Gaussian distributed quantities
	- $\mathbf{x} \sim \mathcal{N}(\mathbf{\mu}, \mathbf{\Sigma}) \rightarrow \mathbf{A}\mathbf{x} + \mathbf{b} \sim \mathcal{N}(\mathbf{A}\mathbf{\mu} + \mathbf{b}, \mathbf{A}\mathbf{\Sigma}\mathbf{A}^T)$
- The sum of two independent Gaussian r.v. is a Gaussian
	- $Y = X_1 + X_2, X_1 \perp X_2 \rightarrow \mu_V = \mu_1 + \mu_2, \ \Sigma_V = \Sigma_1 + \Sigma_2$
- The multiplication of two Gaussian functions is another Gaussian function (no longer normalized)
	- $\bullet \quad \mathcal{N}(a, A) \mathcal{N}(b, B) \propto \mathcal{N}(c, C)$
	- Where $C = (A^{-1} + B^{-1})^{-1}$, $c = CA^{-1}a + CB^{-1}b$

a sample from this pmf having a size of $n = 4$

 $S_1 = \{1,1,1,6\} \Rightarrow E(S_1) = 2.25$ $S_2 = \{1, 1, 3, 6\} \Rightarrow E(S_2) = 2.75$ $\ddot{\cdot}$ $S_m = \{1,4,6,6\} \Rightarrow E(S_m) = 4.25$

According to CLT, it will follow a bell curve distribution (normal distribution)

CS4641B Machine Learning | Fall 2020 38

Central limit theorem

Probability mass function of a **biased** dice Let's say, I am going to get

Outline

- **Probability Distributions**
- Joint and Conditional Probability Distributions
- Bayes' Rule
- Mean and Variance
- **Properties of Gaussian Distribution**
- Maximum Likelihood Estimation

Maximum likelihood estimation

- **Probability**: inferring probabilistic quantities for data given fixed models (e.g. prob. of events, marginals, conditionals, etc.)
- **E** Statistics: inferring a model given fixed data observations (e.g. clustering, classification, regression)
- Main assumption in MLE: Independent and identically distributed random variables

Maximum likelihood estimation

- For Bernoulli (i.e. flip a coin): $f(x_i|\theta) = \theta^{x_i}(1-\theta)$
- Objective function (what we are trying to maximize): $L(D | \theta) = p(X = x_1, X = x_2, X = x_3, ..., X = x_n)$

applying the i.i.d. assumption $= p(X = x_1) p(X = x_2) ... p(X = x_n)$

We can then rewrite:

$$
L(\mathcal{D} \mid \theta) = \prod_{i=1}^{n} f(x_i \mid \theta) = \prod_{i=1}^{n} \theta^{x_i} (1)
$$

$x_i \in \{0,1\}$ or {head, tail}

 $x_i(1-\theta)^{1-x_i}$

CS4641B Machine Learning | Fall 2020 42

 $1-x_2$ … $\times \theta^{x_n}(1-\theta)^{1-x_n}$

Maximum likelihood estimation

$$
L(\mathcal{D} \mid \theta) = \theta^{x_1} (1 - \theta)^{1 - x_1} \times \theta^{x_2} (1 - \theta)^{1 - x_2} = \theta^{\sum x_i} (1 - \theta)^{\sum (1 - x_i)}.
$$

■ We don't like multiplication, let's convert it into summation by taking the log: $L(\mathcal{D} | \theta) = p^{\sum x_i} (1-p)^{\sum (1-x_i)}$

$$
logL(\mathcal{D}|\theta) = l(\mathcal{D}|\theta) = log(\theta) \sum_{i=1}^{n} x_i + log(\theta)
$$

Maximum likelihood estimation

■ How to optimize p?

$$
\frac{\partial l(\mathcal{D}|\theta)}{\partial \theta} = 0
$$

$$
\frac{\sum_{i=1}^{n} x_i}{\theta} - \frac{\sum_{i=1}^{n} (1 - x_i)}{1 - \theta} = 0
$$

$$
\theta = \frac{1}{n} \sum_{i=1}^{n} x_i
$$