
CS4641B Machine Learning | Fall 2020

The week ahead

▪ Quiz 0 discussion
▪ Focus videos
▪ Project seminars

▪ Office hours start this week! 
▪ Schedule and sign-up information available on the class website

▪ Assignment 1 is out! Due Wednesday, Sep 9th

▪ Early bird special: 2 completed questions by Sep 2nd

▪ Project seminar 1, available Thursday, Aug 27th

▪ Quiz 1, Friday, Aug 28th 6:00am until Aug 29th 6:00am
▪ Linear algebra and probability

https://rborelav.github.io/cs4641b-fall20/#office-hours-and-questions


These slides are based on slides from Le Song, Andres Mendez-Vazquez, Chao Zhang and Mahdi Roozbahani

CS4641B Machine Learning

Lecture 03: Linear algebra
Rodrigo Borela ‣ rborelav@gatech.edu
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Outline

▪ Linear Algebra Basics
▪ Norms
▪ Multiplications
▪ Matrix Inversion
▪ Trace and Determinant
▪ Eigenvalues and Eigenvectors
▪ Singular Value Decomposition
▪ Matrix Calculus

Complementary reading: Bishop PRML - Appendix C
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Outline

▪ Linear Algebra Basics
▪ Norms
▪ Multiplications
▪ Matrix Inversion
▪ Trace and Determinant
▪ Eigenvalues and Eigenvectors
▪ Singular Value Decomposition
▪ Matrix Calculus



CS4641B Machine Learning | Fall 2020 5

Why linear algebra?

▪ Most data can be represented or stored in matrix-vector form
▪ Provides compact representation for sets of linear equations

4𝑥1 − 5𝑥2 = −13
−2𝑥1 + 3𝑥2 = 9

→
4 −5
−2 3

𝑥1
𝑥2

=
−13
9

→ 𝐀𝐱 = 𝐛

▪ 𝐀 ∈ ℝ𝑁×𝐷 denotes a matrix with N rows and D columns, where elements 
belong to real numbers

▪ 𝐱 ∈ ℝ𝐷 denotes a vector with D real entries. In this class we will follow the 
convention that that a D dimensional vector consists of a matrix with one 
column and D rows.
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Linear algebra basics

▪ Transpose of a matrix results from flipping the rows and the columns. Given 
𝐀 ∈ ℝ𝑁×𝐷, the transpose is 𝐀T ∈ ℝ𝐷×𝑁

▪ For each element of the matrix, the transpose can be written as A𝑖𝑗
𝑇 = A𝑗𝑖

▪ The following properties of the transposes are easily verified

▪ 𝐀T
T
= 𝐀

▪ 𝐀𝐁 T = 𝐁T𝐀T

▪ 𝐀 + 𝐁 T = 𝐀T + 𝐁T

▪ A square matrix 𝐀 ∈ ℝ𝐷×𝐷 is symmetric if 𝐀 = 𝐀T and it is anti-symmetric if 
𝐀 = −𝐀T. Thus each matrix can be written as a sum of symmetric and anti-
symmetric matrices
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Outline

▪ Linear Algebra Basics
▪ Norms
▪ Multiplications
▪ Matrix Inversion
▪ Trace and Determinant
▪ Eigenvalues and Eigenvectors
▪ Singular Value Decomposition
▪ Matrix Calculus
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Norms

▪ Norm of a vector 𝐱 is informally a measure of the length of a vector
▪ More formally, a norm is any function 𝑓:ℝ𝐷 → ℝ that satisfies:

▪ For all 𝐱 ∈ ℝ𝐷, 𝑓 𝐱 ≥ 0 (non-negativity)
▪ 𝑓 𝐱 = 0 is and only if 𝑥 = 0 (definiteness)
▪ For 𝐱 ∈ ℝ𝐷, 𝑡 ∈ ℝ, 𝑓 𝑡𝐱 = 𝑡 𝑓 𝐱 (homogeneity)
▪ For all 𝐱, 𝐲 ∈ ℝ𝐷, 𝑓 𝐱 + 𝐲 ≤ 𝑓 𝐱 + 𝑓 𝐲 (triangle inequality)

▪ Common norms used in machine learning are

▪ ℓ2-norm: 𝐱 2 = σ𝑖=1
𝐷 𝑥𝑖

2

▪ ℓ1-norm: 𝐱 1 = σ𝑖=1
𝐷 𝑥𝑖

▪ ℓ∞-norm: 𝐱 ∞ = max𝑖 𝑥𝑖



CS4641B Machine Learning | Fall 2020 9

Norms

▪ All norms presented so far are examples of the family of ℓ𝑝 norms, which 

are parametrized by a real number 𝑝 ≥ 1

▪ ℓ𝑝-norm: 𝐱 𝑝 = σ𝑖=1
𝐷 𝑥𝑖

𝑝
𝟏

𝒑

▪ Norms can be defined for matrices, such as the Frobenius norm

▪ 𝐀 𝐹 = σ𝑖=1
𝑁 σ𝑗=1

𝐷 Aij
2 = tr 𝐀𝐓𝐀
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Vector norm examples

▪ ℓ1-norm and ℓ2-norm 
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Special matrices

▪ The identity matrix, denoted by 𝐈 ∈ ℝ𝐷×𝐷 is a square matrix with ones on 
the diagonal and zeros everywhere else

▪ A diagonal matrix is a matrix where all non-diagonal entries are zero. 
Typically denoted by 𝐷 ∈ ℝ𝑁×𝑁, 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1 𝑑2 ⋯ 𝑑𝑁)

▪ Two vectors 𝐱, 𝐲 ∈ ℝ𝐷 are orthogonal if 𝐱 ⋅ 𝐲 = 𝐱T𝐲 = 0 (scalar zero). A 
square matrix 𝐔 ∈ ℝ𝐷×𝐷 is orthogonal if all its columns are orthogonal to 
each other and are normalized

▪ It follows from orthogonality and normality that
▪ 𝐔T𝐔 = 𝐈 = 𝐔𝐔T

▪ 𝐔𝐱 2 = 𝐱 2
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Outline

▪ Linear Algebra Basics
▪ Norms
▪ Multiplications
▪ Matrix Inversion
▪ Trace and Determinant
▪ Eigenvalues and Eigenvectors
▪ Singular Value Decomposition
▪ Matrix Calculus
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Multiplications

▪ The product of two matrices 𝐀 ∈ ℝ𝑁×𝐷 and 𝐁 ∈ ℝ𝐷×𝑃 is given by 𝐂 ∈

ℝ𝑁×𝑃, where 𝐶𝑖𝑗 = σ𝑘=1
𝐷 𝐴𝑖𝑘𝐵𝑘𝑗

▪ Given two vectors 𝐱, 𝐲 ∈ ℝ𝐷, the term 𝐱 ⋅ 𝐲 (or 𝐱T𝐲) is called the inner 
product or dot product of the vectors, and is a real number given by 
σ𝑘=1
𝐷 𝑥𝑖𝑦𝑖. For example, 

𝐱T𝐲 = 𝑥1 𝑥2 𝑥3

𝑦1
𝑦2
𝑦3

=෍
𝑖=1

3

𝑥𝑖𝑦𝑖
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Multiplications

▪ The dot product also has a geometrical interpretation, for vectors in 𝐱, 𝐲 ∈
ℝ2 with an angle 𝜃 between them:

▪ Given two vectors 𝐱 ∈ ℝ𝑁 and 𝐲 ∈ ℝ𝐷 the term 𝐱𝐲T is called the outer 

product of the vectors and is a matrix given by 𝑥𝑖𝑦𝑗
T
= 𝑥𝑖𝑦𝑗. For example,

𝐱𝐲T =

𝑥1
𝑥2
𝑥3

𝑦1 𝑦2 𝑦3 =

𝑥1𝑦1 𝑥1𝑦2 𝑥1𝑦3
𝑥2𝑦1 𝑥2𝑦2 𝑥2𝑦3
𝑥3𝑦1 𝑥3𝑦2 𝑥3𝑦3

𝜃

𝐱

𝐲

𝐱 ⋅ 𝐲 = 𝐱 𝟐 𝐲 𝟐 cos 𝜃
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Inner product properties

▪ The inner product is a measure of correlation between two vectors scaled by 
the norms of the vectors 
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Inner product properties

▪ The inner product is a measure of correlation between two vectors, scaled 
by the norms of the vectors
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Inner product properties

▪ The inner product is a measure of correlation between two vectors scaled by 
the norms of the vectors 
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Outline

▪ Linear Algebra Basics
▪ Norms
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▪ Matrix Inversion
▪ Trace and Determinant
▪ Eigenvalues and Eigenvectors
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Linear independence and matrix rank

▪ A set of vectors 𝐱1, 𝐱1, … , 𝐱𝑁 ⊂ ℝ𝐷 are said to be linearly independent if 
no vector can be represented as a linear combination of the remaining 

vectors. Thus, if 𝐱𝑁 = σ𝑖=1
𝑁−1𝛼𝑖𝐱𝑖 for some scalar values 𝛼1, 𝛼2, … , 𝛼𝑁−1 ∈ ℝ

then we say that the vectors are linearly dependent; otherwise the vectors 
are linearly independent

▪ The column rank of a matrix 𝐀 ∈ ℝ𝑁×𝐷 is the size of the largest subset of 
columns of 𝐀 that constitute a linearly independent set. Row rank of a 
matrix is defined similarly for rows of a matrix. It can be easily shown that 
the row and column ranks are equivalent, therefore we shall refer only to 
the rank of a matrix.
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Matrix rank examples

▪ What are the ranks for the following matrices?

𝐁 =
1 0 2
2 1 0
3 2 1

𝐀 =
1 2 3
2 4 6
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Matrix inverse

▪ The inverse of a square matrix 𝐀 ∈ ℝ𝑁×𝐷 is denoted 𝐀−1 and is the unique 
matrix such that 𝐀−1𝐀 = 𝐈 = 𝐀𝐀−1

▪ For some square matrices 𝐀−1 may not exist, and we say that 𝐀 is singular or 
non-invertible. In order for 𝐀 to have an inverse, 𝐀 must be full-rank

▪ For non-square matrices the inverse, denoted by 𝐀+ is given by 𝐀+ =

𝐀T𝐀
−𝟏
𝐀T called the pseudo-inverse
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Outline
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▪ Trace and Determinant
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▪ Singular Value Decomposition
▪ Matrix Calculus
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Matrix trace

▪ The trace of a matrix 𝐀 ∈ ℝ𝐷×𝐷denoted as tr(𝐀) is the sum of the diagonal 
elements in the matrix

tr 𝐀 =෍
𝑖=1

𝐷

A𝑖𝑖

▪ The trace has the following properties
▪ For 𝐀 ∈ ℝ𝐷×𝐷, tr 𝐀 = tr(𝐀T)
▪ For 𝐀,𝐁 ∈ ℝ𝐷×𝐷, tr 𝐀 + 𝐁 = tr 𝐀 + tr 𝐁
▪ For 𝐀 ∈ ℝ𝐷×𝐷, t ∈ ℝ, tr 𝑡𝐀 = t ⋅ tr(𝐀T)
▪ For 𝐀,𝐁, 𝐂 such that 𝐀𝐁𝐂 is a square matrix tr 𝐀𝐁𝐂 = tr 𝐁𝐂𝐀 =

tr 𝐂𝐀𝐁

▪ The trace of a matrix helps us easily compute norms and eigenvalues of 
matrices we will see later
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Matrix determinant

▪ The determinant of a square matrix 𝐀, denoted by 𝐀 , is defined as

det 𝐀 =෍

𝑗=1

𝐷

−1 𝑖+𝑗𝑎𝑖𝑗𝑀𝑖𝑗

where 𝑀𝑖𝑗 is determinant of matrix 𝐀 without row 𝑖 and column 𝑗.

▪ For a 2 × 2 matrix 𝐀 =
𝑎 𝑏
𝑐 𝑑

, 𝐀 = 𝑎𝑑 − 𝑏𝑐
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Properties of matrix determinant

▪ 𝐀 = 𝐀T

▪ 𝐀𝐁 = 𝐀 𝐁
▪ 𝐀 = 0 if and only if 𝐀 is not invertible

▪ If 𝐀 is invertible, then 𝐀−1 =
1

𝐀
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Outline

▪ Linear Algebra Basics
▪ Norms
▪ Multiplications
▪ Matrix Inversion
▪ Trace and Determinant
▪ Eigenvalues and Eigenvectors
▪ Singular Value Decomposition
▪ Matrix Calculus
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Eigenvalues and eigenvectors

▪ Given a square matrix 𝐀 ∈ ℝ𝐷×𝐷 we say that 𝜆 ∈ ℂ is an eigenvalue of 𝐀
and 𝐱 ∈ ℂ𝐷 is an eigenvector if

𝐀𝐱 = 𝜆𝐱, 𝐱 ≠ 𝟎

▪ Intuitively this means that upon multiplying the matrix 𝐀 with a vector 𝐱 we 
get the same vector, but scaled by the parameter 𝜆

▪ Geometrically, we are transforming the matrix 𝐀 from its original 
orthonormal basis/coordinates to a new set of orthonormal basis 𝐱 with
magnitude as 𝜆
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Computing eigenvalues and eigenvectors

▪ We can rewrite the original equation in the following manner
𝐀𝐱 = 𝜆𝐱, 𝐱 ≠ 𝟎

(𝐀 − 𝜆𝐈)𝐱 = 𝟎, 𝐱 ≠ 𝟎

▪ This is only possible if (𝐀 − 𝜆𝐈) is singular, that is 𝐀 − 𝜆𝐈 = 0

▪ Thus eigenvalues and eigenvectors can be computed
1. Compute the determinant of 𝐀 − 𝜆𝐈

▪ This results in a polynomial of degree D
2. Find the roots of the polynomial equating it to zero

▪ The D roots are the D eigenvalues of 𝐀. They make 𝐀 − 𝜆𝐈 singular
3. For each eigenvalue 𝜆 solve 𝐀 − 𝜆𝐈 𝐱 = 𝟎 to find eigenvector 𝐱
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Eigenvalue example

Matrix 𝐀 =
1 2
3 −4

1. Compute the determinant of 𝐀 − 𝜆𝐈

𝐀 − 𝜆𝐈 =
1 2
3 −4

−
𝜆 0
0 𝜆

=
1 − 𝜆 2
3 −4 − 𝜆

𝐀 − 𝜆𝐈 = 1 − 𝜆 −4 − 𝜆 − 6

2. Find the roots of the polynomial equating it to zero

𝐀 − 𝜆𝐈 = 0 → 1 − 𝜆 −4 − 𝜆 − 6 = 0 → ቊ
𝜆1 = −5
𝜆2 = 2
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Eigenvalue example

3. For each eigenvalue 𝜆 solve 𝐀 − 𝜆𝐈 𝐱 = 𝟎 to find eigenvector 𝐱

1 − 𝜆 2
3 −4 − 𝜆

𝑥1
𝑥2

=
0
0

→ ቊ
1 − 𝜆 𝑥1 + 2𝑥2 = 0

3𝑥1 − 4 + 𝜆 𝑥2 = 0

Eigenvector for 𝜆1 = −5

ቊ
6𝑥1 + 2𝑥2 = 0
3𝑥1 + 𝑥2 = 0

→ 𝐱1 =
1
−3

or
0.3162
−0.9487

Eigenvector for 𝜆2 = 2

ቊ
−𝑥1 + 2𝑥2 = 0
3𝑥1 − 6𝑥2 = 0

→ 𝐱2 =
2
1
or

0.8944
0.4472
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Matrix eigen-decomposition

▪ All the eigenvectors can be written together as 𝐀𝐗 = 𝐗𝚲 where the columns 
of 𝐗 are the eigenvectors of 𝐀, and 𝚲 is a diagonal matrix whose elements 
are eigenvalues of 𝐀

▪ If the eigenvectors of 𝐀 are invertible, then 𝐀 = 𝐗𝚲𝐗−1

▪ There are several properties of eigenvalues and eigenvectors

▪ tr 𝐀 = σ𝑖=1
𝐷 𝜆𝑖

▪ det 𝐀 = ς𝑖=1
𝐷 𝜆𝑖

▪ Rank of 𝐀 is the number of non-zero eigenvalues of 𝐀

▪ If 𝐀 is non-singular then 
1

𝜆𝑖
are the eigenvalues of 𝐀−1

▪ The eigenvalues of a diagonal matrix are the diagonal elements of the 
matrix itself 
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Properties of  eigendecomposition

▪ For a symmetric matrix 𝐀 it can be shown that eigenvalues are real and the 
eigenvectors are orthonormal. Thus it can be represented as 𝐔𝚲𝐔T

▪ Considering quadratic form of 𝐀,

▪ 𝐱T𝐀𝐱 = 𝐱T𝐔𝚲𝐔T𝐱 = 𝐲T𝚲𝐲 = σ𝑖=1
𝑁 𝜆𝑖𝑦𝑖

2 where (𝐲 = 𝐔T𝐱)

▪ Since 𝑦𝑖
2 is always positive the sign of the expression always depends on 𝜆𝑖. 

If 𝜆𝑖 > 0 then the matrix is 𝐀 positive definite, if 𝜆𝑖 ≥ 0 then the matrix 𝐀 is 
positive semidefinite
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Covariance matrix

▪ For a dataset 𝐀 we can define the covariance matrix as 𝐂 =
ҧ𝐴T ҧ𝐴

𝑁
for large N

and 𝐂 =
ҧ𝐴T ҧ𝐴

𝑁−1
for small N. ഥ𝐀 is the matrix 𝐀 centered around its mean

▪ Application example: organizing products in a grocery store

𝐀 =

3 2 1
1 2 2
4
2

3
1

2
1

, 𝝁𝑇 = 2.5 2.0 1.5
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Covariance matrix

𝐀 =

3 2 1
1 2 2
4
2

3
1

2
1

→ ഥ𝐀 =

0.5 0.0 −0.5
−1.5 0.0 0.5
1.5
−0.5

1.0
−1.0

0.5
−0.5

𝐂 =
ҧ𝐴T ҧ𝐴

𝑁 − 1
=

1

4 − 1

0.5 −1.5 1.5 −0.5
0.0 0.0 1.0 −1.0
−0.5 0.5 0.5 −0.5

0.5 0.0 −0.5
−1.5 0.0 0.5
1.5
−0.5

1.0
−1

0.5
−0.5

𝐂 =
1.7 0.7 0.0
0.7 0.7 0.3
00. 0.3 0.3
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Correlation matrix

▪ Given that the different features may not be on the same order of
magnitude, the covariance matrix can be standardized based on the 
standard deviation of the individual features to yield the correlation matrix, 
such that

𝐜𝐨𝐫𝐫 =
𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑋, 𝑌

𝜎𝑥𝜎𝑦
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Correlation matrix

▪ Back to our example…

𝐜𝐨𝐫𝐫 =

1.7

1.7

0.7

1.7 0.7

0.0

1.7 0.3
0.7

1.7 0.7

0.7

0.7

0.3

0.7 0.3
0.0

1.7 0.3

0.3

0.7 0.3

0.3

0.3

=
1.0 0.6 0.0
0.6 1.0 0.7
00. 0.7 1.0
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Outline

▪ Linear Algebra Basics
▪ Norms
▪ Multiplications
▪ Matrix Inversion
▪ Trace and Determinant
▪ Eigenvalues and Eigenvectors
▪ Singular Value Decomposition
▪ Matrix Calculus



𝑈
Σ

𝑉𝑇

(𝐷 < 𝑁)
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Singular value decomposition

▪ 𝐗𝑁×𝐷, N is the number of dataset instances, D is the dimensionality of each 
instance (i.e. the number of features) and 𝐗 is a centered matrix

▪ The singular value decomposition is given by
𝐗 = 𝐔𝚺𝐕T

Where
▪ 𝐔𝑁×𝑁 → 𝑢𝑛𝑖𝑡𝑎𝑟𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 → 𝐔𝐔T = 𝐈
▪ 𝚺𝑁×𝐷 → 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥
▪ 𝐕𝐷×𝐷 → 𝑢𝑛𝑖𝑡𝑎𝑟𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 → 𝐕𝐕T = 𝐈

𝑢11 ⋯ 𝑢1𝑁
⋮ ⋱ ⋮

𝑢𝑁1 ⋯ 𝑢𝑁𝑁 𝑁×𝑁

𝑠11 ⋯ 0
0 ⋱ ⋮
⋮
0
0

0
0
0

𝑠𝐷𝐷
0
0 𝑁×𝐷

𝑣11 ⋯ 𝑣1𝐷
⋮ ⋱ ⋮

𝑣𝐷1 ⋯ 𝑣𝐷𝐷 𝐷×𝐷



𝑈
Σ

𝑉𝑇
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Singular value decomposition

𝑢11 ⋯ 𝑢1𝑁
⋮ ⋱ ⋮

𝑢𝑁1 ⋯ 𝑢𝑁𝑁 𝑁×𝑁

𝑠11 ⋯ 0
0 ⋱ ⋮
⋮
0
0

0
0
0

𝑠𝐷𝐷
0
0 𝑁×𝐷

𝑣11 ⋯ 𝑣1𝐷
⋮ ⋱ ⋮

𝑣𝐷1 ⋯ 𝑣𝐷𝐷 𝐷×𝐷
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Covariance matrix and SVD

▪ Starting with the covariance matrix expression 𝐂𝐷×𝐷 =
𝐗T𝐗

𝑁
and replacing 

𝐗 = 𝐔𝚺𝐕T into the expression for the covariance, we obtain:

𝐂 =
𝐗T𝐗

𝑁
→ 𝐂 =

𝐕𝚺T𝐔T𝐔𝚺𝐕T

𝑁
=
𝐕𝚺2𝐕T

𝑁

▪ Multiplying the result by 𝐕 on the right hand side

𝐂𝐕 = 𝐕
Σ2

𝑁
𝐕T𝐕 = 𝐕

𝚺2

𝑁
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Covariance matrix

▪ According to the eigendecomposition definition 𝐂𝐕 = 𝐕𝚲, therefore the 
eigenvalues of the covariance matrix are:

𝜆𝑖 =
Σi
2

𝑁

▪ 𝜆𝑖: eigenvalue of 𝐂 or covariance matrix
▪ Σ𝑖: singular value of 𝐗 matrix

So we can directly calculate eigenvalue of a covariance matrix by having the 
singular values of matrix 𝐗



Image credit: Kevin Binz
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Geometric meaning of SVD
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Outline

▪ Linear Algebra Basics
▪ Norms
▪ Multiplications
▪ Matrix Inversion
▪ Trace and Determinant
▪ Eigenvalues and Eigenvectors
▪ Singular Value Decomposition
▪ Matrix Calculus
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Matrix calculus

▪ For a vector 𝐱, 𝐲 ∈ ℝ𝐷, let 𝑓 𝐱 = 𝐛T𝐱, then ∇𝐱𝐛
T𝐱 = 𝐛

▪
𝜕𝑓 𝐱

𝜕𝑥𝑘
=

𝜕

𝜕𝑥𝑘
σ𝑖=1
𝐷 𝑏𝑖𝑥𝑖 = 𝑏𝑘

▪ Now for a quadratic function 𝑓 𝐱 = 𝐱T𝐀𝐱, with 𝐀 ∈ 𝕊𝐷, ∇𝐱 𝐱T𝐀𝐱 = 2𝐀𝐱

▪
𝜕𝑓 𝐱

𝜕𝑥𝑘
=

𝜕

𝜕𝑥𝑘
σ𝑖=1
𝐷 σ𝑗=1

𝐷 𝐴𝑖𝑗𝑥𝑖𝑥𝑗 = σ𝑖≠𝑘𝐴𝑖𝑘𝑥𝑖 + σ𝑗≠𝑘𝐴𝑘𝑗𝑥𝑗 + 2𝐴𝑘𝑘𝑥𝑘 =

2σ𝑖=1
𝐷 𝐴𝑘𝑖𝑥𝑖


